Force de gravitation et mouvement d’objets

Force de gravitation et principe d’inertie

Satellite géostationnaire Météosat

Balles de tennis

Deux balles de tennis A et B  de masse m = 60,0 g et de rayon r = 3,00 cm, sont placées à d = 5,00 cm l’une de l’autre.

 

1- Calculer le poids PA de la balle A. On donne g = 9,80 N.kg-1.

2- Donner l’expression littérale de la force d’interaction FB/A exercée par la balle B sur la balle A. On précisera les unités.

3- Calculer la valeur de cette force.  Donnée : G = 6,67.10-11 N.kg-2.m2.

4- Comparer la valeur de la force d’interaction  FB/A  et la valeur de PA. Conclusion.

Forces d’interaction entre la Terre et la Lune

La Terre et la Lune sont assimilables à des corps à répartition sphérique de masse dont les caractéristiques sont les suivantes :

 

Terre:

 

MT = 5,98.1024 kg

 

RT = 6380 km

 

Lune :

ML = 7,34.1022 kg

RL = 1740 km

1- La distance ‘d’ entre la surface de la Terre et de la Lune est d = 3,80×105 km. Ecrire l’expression littérale de la force de gravitation exercée par la Terre sur la Lune FT/L . Calculer sa valeur.

 

2- Comparer la valeur de la force exercée par la Lune sur la Terre FL/T  avec   FT/L.

 

3- Lors de la dernière mission lunaire (Appolo XVII), les astronautes ont ramené  mR = 117 kg de roches. Quel était le poids de ces roches au départ de la Lune PL, puis à l’arrivée sur Terre PT ?

 

Données : G = 6,67.10-11 N.kg-2.m2

Intensité du champ de pesanteur terrestre g= 9,80 N/kg ; g= 1,62 N/kg

Le télescope de Hubble

Le télescope spatial Hubble évolue sur une orbite circulaire à h1 = 600 km d’altitude.

1- Montrer que si la force de gravitation est égale au poids de l’objet, l’intensité de la pesanteur à une altitude h s’écrit : g = G.MT/(RT+h).

2- Calculer l’intensité de la pesanteur g1 à l’altitude h1 de Hubble.

3- Comparer sa valeur à celle de l’intensité de la pesanteur au niveau du sol go et conclure.

4- Hubble a une masse m = 12 t. Calculer son poids à 600 km d’altitude.

 

Données : MT = 5,98.1024 kg ; RT = 6378 km ; G = 6,67.10-11 N.kg-2.m; go = 9.81 N.kg-1

Comparaison du poids d’un objet sur la Terre et sur la Lune

1) Donner la définition du vecteur poids d’un objet de masse m sur Terre. On donnera les 4 caractéristiques du vecteur poids.

2) Calculer le poids PL d’un cosmonaute de masse m = 80 kg , sur la Lune et sur la Terre (poids noté PT).

L’intensité du champ lunaire vaut gL = 1,6 N.kg-1  celui du champ terrestre vaut gT = 9,8 N.kg-1.

3) La masse du cosmonaute dépend-t-elle du lieu ou il se trouve ?

4) Calculer le rapport entre le poids du cosmonaute sur Terre et sur la Lune. Conclusion.