Exercice1:

1- Calculer:

$$A = \frac{\sqrt[4]{9} \times \sqrt{\sqrt[3]{3\sqrt[3]{9}}}}{\sqrt[5]{81} \times \sqrt{\sqrt[3]{3}}} \qquad ; \qquad B = \frac{27^{\frac{2}{3}} \times 49^{\frac{1}{2}} \times 16^{\frac{3}{4}}}{(9\sqrt{3})^{\frac{2}{5}}} \qquad ; \qquad C = Arctan\left(tan\left(\frac{-31\pi}{11}\right)\right)$$

2- Calculer les limites suivantes :

$$\lim_{x\to 0} \frac{\sqrt[3]{x+1}-1}{x}$$
; $\lim_{x\to 1} \frac{\sqrt[3]{x}-1}{\sqrt[3]{4x+4}-2}$; $\lim_{x\to 1^-} \operatorname{Arctan}\left(\sqrt{\frac{x^2+1}{x^2-1}}\right)$

Exercice 2: On considéré les suites suivantes :

$$U_{n+1} = \frac{U_n}{1 + 2U_n}$$
; $U_0 = \frac{1}{2}$ $(n \in IN)$ et $V_n = 1 + \frac{1}{U_n}$ $(n \in IN)$

- 1- Montrer que $(V_n)_{n\geq 0}$ est une suite arithmétique, puis déterminer le premier terme V_0 et la raison r.
- 2- Exprimer V_n en fonction de n.
- 3- En déduire U_n en fonction de n.
 - On pose : $S_n = V_0 + V_1 + \cdots + V_{n-1} + V_n$
- 4- Calculer la somme S_n

Exercice 3: Soit la fonction définie sur l'intervalle $\left[\frac{1}{4}; +\infty\right[$ par :

$$f(x) = \sqrt{2x - 1}$$

- 1- Etudier les variations de la fonction f
- 2- Donner le tableau de variations.
- 3- Montrer que la fonction f admet une fonction réciproque f^{-1} définie sur un intervalle J qu'il faut déterminer.
- **4-** Déterminer $f^{-1}(x)$ pour tout x de J.
- 5- Construire dans un même repère les courbes Cf et Cf^{-1} .