Exercice 1: Compléter les affirmations suivantes :

a. 29×11=319 donc:

29 est un de 319 ;

319 est un de 11.

b. 17×36=612 donc:

c. 23×18=414 donc:

18 est un de 414 :

Exercice 2: Parmi les affirmations suivantes lesquelles sont vraies, lesquelles sont fausses ?

	\mathbf{V}	\mathbf{F}
17 est un diviseur de 51, donc 17 a pour diviseur 51.		
27 est un diviseur de 108, donc 108 a pour diviseur 27.		
42 a pour diviseur 14, donc 14 est un diviseur de 42.		
37 n'est pas divisible par 2, donc 37 n'est pas multiple de 2.		
11 est un diviseur de 44, donc 44 a pour diviseur 11.		
143 est un multiple de 11, donc 11 est un diviseur de 143.		

Exercice 3:

Déterminer la parité des nombres suivants :

$$A = 11^2 + 12^2$$

$$B = 15^2 - 12^2$$

$$C = 22^2 + 23^2$$

$$D=6n+3$$

$$E=2n+7$$

$$F = n(n+1)(n+2)$$

Sachant n que est entier.

Exercice 4: Soit n un entier naturel

- 1. Montrer que : $n^2 + n$ est paire
- 2. En déduire que n^2 et n ont la même parité.

Exercice 5:

- 1. Montrez que : $a = 3n^2 + 15n + 7$ est impaire pour tout n entier
- 2. Montrez que : $a = 5n^2 7n + 4$ est paire pour tout n entier
- 3. Montrez que : $a = n^4 n^2 + 16$ est un multiple de 4

Exercice 6: Soit n un entier naturel

- 1- Montrez que : $n^3 n = (n+2)(n^2 2n + 3) 6$
- 2- En déduire les valeurs de n tel que $\frac{n^3-n}{n+2}$ $\forall n \in NI$

Exercice 7:

1- Donner tous les diviseurs des nombres suivants :

35	
19	
32	
50	
24	
20	
25	
27	

2- En déduire :

$$PGCD(50;35)=...$$

PPCM
$$(32;50)=...$$

Exercice 8:

- 1. a) Déterminer PGCD(18; 30).
 - b) Déterminer la liste des six premiers multiples de 18 ; et des quatre premiers multiples de 30.
 - c) En déduire le Plus Petit des Multiples Communs de 18 et 30 (noté PPCM(18; 30)).
 - d) Comparer les deux nombres suivants: 18×30 et PPCM(18; 30)×PGCD(18; 30).

Exercice 9:

Décomposer les nombres entiers naturels suivants : a=2520 et b=256

- 1- Calculer PPCM(a; b) et PGCD(a; b).
- 2- Les nombres \sqrt{ab} et $\frac{a}{b}$ sont-ils des éléments de ?

Exercice 10:

Soit n un entier naturel:

Montrer que les nombres suivants sont des carrés parfaits :

$$A = n^2 + 4n + 4$$
 ; $B = 4n^2 + 4n + 1$; $C = 9n^2 + 6n + 1$

$$D = n^2(n^2 + 2) + 1$$
; $E = 3n(3n + 4) + 4$

$$F = n(n+1)(n+2)(n+3) + 1$$
; $G = (n+2)(n-3) + 8n^2 + 7(n+1)$

Exercice 11:

- 1- Montrer que 101 est un nombre premier ?
- 2- Le nombre 2019 est-il premier ? Justifier.
- 3- Le nombre 111111 est-il premier ? Justifier.
- 4- Montrer que les nombres 1000000001 et $7^{24} 1$ et 7123^5 ne sont pas premiers.