Généralités sur les fonctions numériques

Pr. LATRACH Abdelkbir TCS.F

Activité ①:

Considérons un rectangle de longueur (x-3)cm et de largeur (x-2)cm tel que x un réel supérieur à 3. On désigne par f(x) la surface de ce rectangle.

- 1) Déterminer l'expression de f(x).
- **2)** Déterminer la surface de ce triangle si x = 4 et si x = 5
- **3)** Déterminer les valeurs possibles de x si f(x) = 12 puis si f(x) = 20.

Application ①:

Considérons f la fonction définie sur $\mathbb R$ par : $f(x) = 2x^2 - 3$.

- 1) Déterminer les images de -2, 0 et 2 par f.
- 2) Déterminer les antécédents, si existent, des nombres 0,5 et -4.

Activité 2:

Considérons f la fonction définie par : $f(x) = \frac{2x}{x^2 - 1}$

Déterminer les images, si possible, des nombres 0.1 et -1.

Application 2:

Déterminer l'ensemble de définition de fonctions suivantes:

$$\bullet f_1: x \mapsto x^3 + 12x - 5$$

•
$$f_1: x \mapsto x^3 + 12x - 5$$
 • $f_2: x \mapsto \frac{-2x + 4}{5x + 3}$

$$\bullet f_3: x \mapsto \frac{\sqrt{x}}{2x^2 + 2x - 4}$$

•
$$f_3: x \mapsto \frac{\sqrt{x}}{2x^2 + 2x - 4}$$
 • $f_4: x \mapsto \frac{4x^2 - 5}{\sqrt{2x^2 + 2x - 4}}$

$$\bullet f_5: x \mapsto \frac{x+4}{|x|-3}$$

$$\bullet f_5: x \mapsto \frac{x+4}{|x|-3} \qquad \bullet f_6: x \mapsto \frac{\sqrt{2-x}}{|x+2|-1}$$

•
$$f_7: x \mapsto \frac{\sqrt{2-x}}{\sqrt{4x+2}}$$
 • $f_8: x \mapsto \sqrt{\frac{2-x}{4x+2}}$

•
$$f_8: x \mapsto \sqrt{\frac{2-x}{4x+2}}$$

Application 3:

Montrer que les fonctions f et g définies par

$$f(x) = \frac{\sqrt{x+2}}{x-4}$$
 et $g(x) = \frac{1}{\sqrt{x-2}}$ sont égales.

Activité 3:

Considérons f la fonction définie sur \mathbb{R} par :

$$f(x) = 2x + 2.$$

Représenter graphiquement la fonction f dans un repère orthonormé.

Application 4:

Considérons f la fonction définie par $f(x) = \frac{x^2}{x+1}$.

Parmi les points A(0;0), B(-1;1), $C(3;\frac{3}{0})$ et D(2;4)

déterminer ceux appartiennent à (C_f) . Justifier vos réponses.

Application **⑤**:

Considérons f la fonction

définie par sa courbe (C_f)

représentée ci-contre :

- 1) Déterminer l'ensemble de définition de f.
- **2)** Déterminer les images par f des nombres suivants:

$$-5, -4, -3, -4, 0$$
 et 4.

- **3)** Par f, quels sont les antécédents de 3 et de 5 ?
- **4)** Déterminer les points d'intersection de (C_f) avec les axes du repère.

Considérons f la fonction définie par

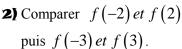
$$f(x) = x^2 + 2x - 8$$
.

Déterminer les points d'intersection de (C_f) avec les axes du repère.

Activité 4:

Considérons f la fonction définie par sa courbe (C_f) représentée ci-contre :

1) Déterminer l'ensemble de définition de f.



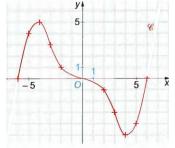
- **3)** Soit $x \in D_f$, comparer f(-x) et f(x).
- **4)** Quelle est la propriété géométrique vérifiée par (C_f) ?

Activité 5:

Considérons f la fonction définie par sa courbe (C_f)

représentée ci-contre :

- 1) Déterminer l'ensemble de définition de f.
- **2)** Est-ce-que f est paire? Justifier votre réponse.



- **3)** Comparer f(-2) et f(2) puis f(-3) et f(3)puis f(-5) et f(5).
- **4)** Soit $x \in D_f$, comparer f(-x) et f(x).
- 5) Quelle est la propriété géométrique vérifiée par (C_f) ?

Application 7:

Etudier la parité de fonctions suivantes :

$\bullet f_1: x \mapsto x - \frac{1}{x^2}$

$$\bullet \quad f_2: x \mapsto \frac{x}{x^2 - 1}$$

•
$$f_3: x \mapsto \sqrt{x} +$$

•
$$f_{\Delta}: x \mapsto x^2 + x - 3$$

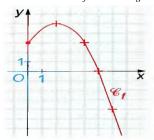
$$\bullet \quad f_5: x \mapsto |x-1| - |x+1|$$

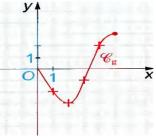
$$f_3: x \mapsto \sqrt{x+1} \qquad \bullet \qquad f_4: x \mapsto x^2 + x - 3$$

$$f_5: x \mapsto |x-1| - |x+1| \quad \bullet f_6: x \mapsto \sin(x) - x\cos(x)$$

Application 8:

Considérons f et g les fonctions définies respectivement sur IR et sur [-5; 5] par ses courbes respectives (C_f) et (C_g) représentées ci-dessous :



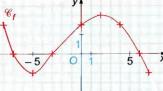


Compléter (C_f) sachant que f est paire et (C_g) sachant que g est impaire.

Activité 6:

Considérons f la fonction définie par sa courbe représentée ci-contre :

- 1) Donner l'ensemble de définition de f.
- **2)** Compléter le tableau suivant:



х	-7	-6	-5	-3	0	2
f(x)						

- **3)** Comment se comport la fonction f lorsque xaugmente sur l'intervalle [-7, -5].
- **4)** Comment se comport la fonction lorsque augmente sur l'intervalle [-5;2].
- **5)** Compléter le tableau suivant :

x	_7 _5
f(x)	

6) Déterminer la valeur maximale et la valeur minimale de la fonction f.

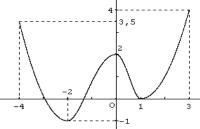
Application 9:

Considérons f la fonction définie sur IR par :

- $f(x) = 2x^2 + 3$.
- 1) Soient a et b deux éléments de l'intervalle $[0, +\infty]$ tels que : a < b.
- a)-Montrer que : f(a) < f(b).
- b)-En déduire la monotonie de f sur $[0, +\infty[$.
- **2)** Etudier la monotonie de f sur $]-\infty,0]$.

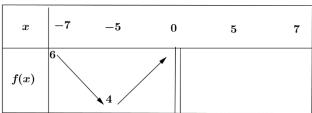
Application 10:

Dresser le tableau de variation de la fonction freprésentée par sa courbe ci-dessous :



Application 102:

Le tableau suivant représente les variations d'une fonction numérique f.



- Déterminer l'ensemble de définition de la fonction
- **2)** Compléter le tableau ci-dessus sachant que f est
- **3)** Compléter le tableau ci-dessus sachant que f est impaire.

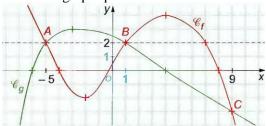
Application ①③:

Soit f une fonction numérique définie sur IR par : $f(x) = x^2 - 2x + 5$.

- 1) Calculer f(1).
- **2)** a)-Montrer que : $f(x) \ge 4$ Pour tout $x \in IR$. b)- qu'est que vous déduisez ?

Application ①④:

Les fonctions f et g sont définies sur IR; leurs représentations graphiques sont données ci-dessous.



Résoudre graphiquement ce qui suit :

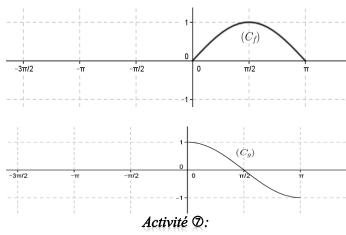
- g(x)=2
- f(x) = 2
- $f(x) \ge 2$

- $g(x) \prec 2$
- g(x) = f(x)
- $g(x) \ge 0$

- $g(x) \ge f(x)$
- $g(x) \prec f(x)$ Application **①**⑤:

Considérons les fonctions f et g définies sur IR par $f(x) = \cos(x)$ et $g(x) = \sin(x)$.

- 1) Etudier la parité de f et de g.
- **2)** Calculer $f(x+2\pi)$ et $g(x+2\pi)$ tel que $x \in IR$.
- 3) Compléter les courbes de f et g représentées cidessous:



Considérons f la fonction définie sur \mathbb{R} par $f(x) = 2x^2$ et (C_f) sa courbe dans un repère orthonormé.

- 1) Etudier la parité de f . Qu'est-ce que vousdéduisez ?
- **2)** Calculer le taux de variation de f entre deux réels distincts a et b.
- a) a)-Etudier la monotonie de f sur $[0,+\infty[$. b)-En déduire la monotonie de f sur $]-\infty,0]$. c)-Dresser le tableau de variations de f .

4) Remplir le tableau suivant :

Tempin ie tuoieuu survant .					
х	0	1	2	$\frac{1}{2}$	
f(x)					

- **5)** Construire (C_f) .
- **6)** Refaire les mêmes questions précédentes pour la fonction g définie sur \mathbb{R} par $g(x) = -x^2$

Application 🛈 🏻 :

Considérons f la fonction définie sur \mathbb{R} par $f(x) = \frac{2}{3}x^2$ et (C_f) sa courbe dans un repère orthonormé

- 1) Donner la nature de (C_f) en précisant ses éléments caractéristiques.
- **2)** Dresser le tableau de variations de f puis construire (C_f) .

Application OO:

Donner le sommet et l'axe de symétrie pour chacune des courbes représentatives des fonctions définies par :

$$\bullet f_1: x \mapsto x^2 + 2x + 1$$

•
$$f_2: x \mapsto -2x^2 + 4x + 1$$

•
$$f_3: x \mapsto x^2 + 1$$

Application ①8:

Dresser le tableau de variations de fonctions définies par :

$$\bullet f_1: x \mapsto x^2 + 2x + 1$$

$$\bullet f_2: x \mapsto -2x^2 + 4x + 1$$

•
$$f_3: x \mapsto x^2+1$$

Application ①9:

Considérons f la fonction définie sur \mathbb{R} par $f(x) = 2x^2 - 4x + 3$ et (C_f) sa courbe dans un repère orthonormé.

- 1) Déterminer la nature de (C_f) en précisant ses éléments caractéristiques.
- **2)** Dresser le tableau de variations de f.
- **3)** Construire (C_f) .
- **4)** Construire dans le même repère la courbe représentative de la fonction g définie sur \mathbb{R} par $g(x) = 2x^2$.

Application @0:

Considérons f et g deux fonctions définies sur \mathbb{R}^* par $f(x) = \frac{1}{x}$ et $g(x) = \frac{-2}{x}$.

- 1) Déterminer la nature de (C_f) et (C_g) les courbes représentatives respectives de f et g dans un repère orthonormé.
 - **2)** Remplir le tableau suivant :

X	$\frac{1}{3}$	$\frac{1}{2}$	1	2	3	4
f(x)						
g(x)						

3) Construire (C_f) et (C_g) .

Application @0:

Donner la forme réduite des fonctions homographiques suivantes :

•
$$f(x) = \frac{3x-1}{x+1}$$
 • $g(x) = \frac{3x-1}{2x+3}$ • $h(x) = \frac{2x-11}{3x+6}$

Application **QQ**:

Donner le tableau de variations des fonctions homographiques suivantes :

•
$$f(x) = \frac{3x-1}{x+1}$$
 • $g(x) = \frac{3x-1}{2x+3}$ • $h(x) = \frac{2x-11}{3x+6}$

Application ②③:

Considérons f la fonction définie par $f(x) = \frac{2x+1}{x-1}$ et

 $(C_f$) la courbe représentative de $\,f\,\,$ dans un repère orthonormé $(O,\vec{i}\,,\vec{j}\,)$.

- 1) Déterminer D_f l'ensemble de définition de $\,f\,$.
- **2)** Déterminer la nature de (C_f) .
- **3)** Construire (C_f) .

Construire dans le même repère la courbe représentative de la fonction g définie sur \mathbb{R} par $g(x) = \frac{3}{x}$.