2BAC PC1L2-Prof:E.Badri

Lycée :Cadi Ayyade

Test diagnostique : Mathématiques

EXERCICE 1:

Soit f la fonction définie sur IR par $:f(x) = x^2 + 3x - 1$ a-Déterminer le domaine de dérivabilité de f b-Déterminer la fonction dérivée 2-Soit f la fonction définie sur \mathbb{R}^+ par $:f(x) = x^3 + \sqrt{x}$ a-Déterminer le domaine de dérivabilité de f b-Déterminer la fonction dérivée

EXERCICE 2:

Calculer les límites suivantes:

1-
$$\lim_{x \to 3} \frac{-x^2 + x + 6}{x^2 - 4x + 3}$$
 2- $\lim_{x \to -1} \frac{2 - \sqrt{1 - 3x}}{x^2 - 1}$ 3- $\lim_{x \to 3^+} \frac{\sqrt{x^2 - 9}}{x - 3}$

$$4 - \lim_{x \to 0} (x^2 + x + 2 + \frac{1}{x^2}) \qquad 5 - \lim_{x \to +\infty} (\sqrt{x} - x^2) \qquad 6 - \lim_{x \to \frac{\pi}{3}} \frac{\sin x - \sqrt{3} \cos x}{3x - \pi}$$

7 -
$$\lim_{x \to -\infty} \frac{\sqrt{x^4 - 1}}{x}$$
 8 - $\lim_{x \to 3} \frac{x^4 + 3x^3 - 7x^2 - 27x - 18}{x^4 - 3x^3 - 7x^2 + 27x - 18}$

EXERCICE 3:

1) Résoudre dans
$$\left[-\pi, 2\pi\right]$$
 : $\sin x + \frac{1}{2} = 0$

2) Résoudre dans
$$\left[-\pi, 2\pi\right]$$
: $2\cos x - \sqrt{2} = 0$

3) Soit
$$A(x) = \cos^2 x - \sin^2 x$$

a. Calculer
$$A(\frac{\pi}{4}+3\pi)$$

b. Montrer que pour tout
$$x \in IR \setminus \left\{ \frac{\pi}{2} + k\pi / k \in \mathbb{Z} \right\}$$
 : $A(x) = \frac{1 - \tan^2 x}{1 + \tan^2 x}$

c. Résoudre dans IR A(x) = 0.5

EXERCICE 4:

I. Résoudre dans IR:
$$|x-1| < 3$$
; $x^2 - |x-6| = 0$ et $\cos^2 x = \frac{1}{2}$

II. Résoudre dans
$$IR^2$$
: le système suivant :
$$\begin{cases} 3x + y = 8 \\ 2x - y = 2 \end{cases}$$

III. Résoudre dans IR :
$$\sin x = 2$$
, $2x^2 + 1 = 0$ et $x^2 - x + 2 = 0$

2BAC PC1&2-Prof :E.Badri Lycée :Cadi Ayyade

Test diagnostique : Mathématiques

