

Exercice (1)

(1) Calculer ce qui suit :

$$A = \left(\frac{\sqrt{10}}{3}\right)^2 - 3^{-2}$$

$$\rightarrow$$
 B = $\sqrt{45} + 2\sqrt{20} - 6\sqrt{5}$

$$ightharpoonup$$
 C = $\sqrt{2\sqrt{7} - \sqrt{3}} \times \sqrt{2\sqrt{7} + \sqrt{3}}$

2 Calculer: $(2\sqrt{3} + \sqrt{5})^2$.

Déduire la simplification de : $\sqrt{17 + 4\sqrt{15}} - \sqrt{5}$

(3) Rendre rationnel le dénominateur des fractions suivantes :

$$F = \frac{7}{2\sqrt{5}}$$
 $F = \frac{3}{\sqrt{17} - \sqrt{14}}$

4 Donner l'écriture scientifique de $M = 0.00342 \times (10^5)^{-3}$

Exercice (2)

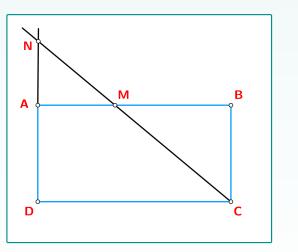
1 Comparer les nombres :
$$3\sqrt{7}$$
 et $5\sqrt{2}$.
Puis $\frac{1}{4-5\sqrt{2}}$ et $\frac{1}{4-3\sqrt{7}}$.

2 x et y deux nombres réels tel que : $5 \le x \le 7$ et $-10 \le y \le -7$

Encadrer les nombres suivants : $> x + y > x - y > x(y + 12) > y^2$

3 z un nombre réel tel que $-1 \le \frac{3-2z}{3} \le 3$, trouver l'encadrement du nombre z.

Exercice (3)

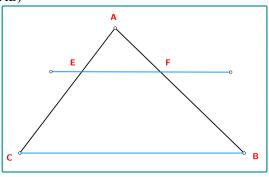

- 1 Soit x la mesure d'un angle aigu, tel que : $\cos x = \frac{4}{5}$. Calculer $\sin x$ puis $\tan x$
- 2 Simplifier ce qui suit : $K = 11 \sin^2 51^\circ 7 \cos 40^\circ + 10 \tan 32^\circ \times \tan 58^\circ + 11 \sin^2 39^\circ + 7 \sin 50^\circ$
- 3 Soit α la mesure d'un angle aigu, simplifier : $L = \sin^4 \alpha \cos^4 \alpha + 2\cos^2 \alpha$

Exercice 4

Soit ABCD un rectangle tels que : AB = 5 et BC = $2\sqrt{5}$.

M est un point de [AB] tel que MB = 4.

- \bigcirc Montrer que : MC = \bigcirc
- (2) Calculer: tan BMC; cos BMC; sin BMC.
- (3) La droit (MC) coupe (AD) en N. $\cos \widehat{AMN} = \cos \widehat{BMC}$ Montrer que calculer MN.



Exercice (5)

ABC est un triangle tel que : AB = 8 et AC = 10 et BC = 7

E est un point de [AC] tel que AE = 4.

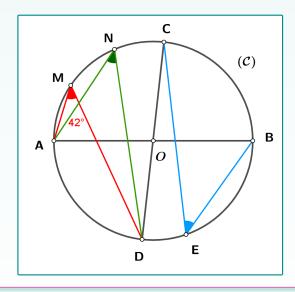
- (1) Le parallèle de (BC) passant par E coupe [AB] de F. Calculer AF et EF.
- (2) M est un point de [AC) tel que AM = 8. et N est un point de [BC) tel que BN = 5.6. Montrer que (MN)//(AB)

Exercice (6)

(C) est un cercle de centre O.

[AB] et [CD] deux diamètres du cercle (C).

$$\widehat{AMD} = 42^{\circ}$$
.


Trouver la mesure des angles :

