Les séismes et relation avec la tectonique des plaques

الزلازل وعلاقتها بتكتونية الصفائح

Introduction:

Par: Ismail JABAR (23/10/2019)

Un séisme, ou tremblement de terre, se traduit en surface par des vibrations du sol. Il provient de la fracturation des roches en profondeur.

Problématique:

- → Comment peut-on évaluer les dégâts causés par les séismes ?
- → Quelle est l'importance de l'enregistrement des ondes sismiques ?
- → Quelle est la structure du globe terrestre ?
- → Comment sont-ils répartis les séismes à la surface de la terre, et quelle relation cela a-t-il avec la tectonique des plaques ?

I. <u>Manifestations et enregistrement des séismes :</u>

1. Les effets et caractéristiques d'un séisme :

a. Activité [1]:

La ville d'Al-Hoceima a connu un terrible séisme (tremblement de terre) le mardi 24 février 2004 à 02h27min du matin, il a duré 3 secondes et il a causé 268 morts et plus de 926 blessés et 15230 sans logement selon le dernier recensement, il a causé aussi l'effondrement de 2539 maisons.

L'intensité de ce séisme était de 6,5 degrés sur l'échelle de Richter, et son foyer était superficiel.

→ Questions :

- 1. Définissez le séisme et donnez son synonyme.
- 2. Relevez du texte les indices qui montrent que le séisme d'Al-Hoceima a été un évènement terrible.
- 3. Relevez du texte les caractéristiques du séisme d'Al-Hoceima.

→ Réponses :

- 1. Le séisme est un phénomène géologique interne au cours duquel la terre est secouée pendant quelques secondes, on l'appelle aussi tremblement de terre.
- 2. Le séisme d'Al-Hoceima est terrible car il avait tué 268 personnes et blessé 926 et effondré 2539 maisons et cela seulement en 3 secondes.
- 3. Le séisme d'Al-Hoceima avait comme caractéristiques : intensité de 6,5 degrés sur l'échelle de Richter et foyer superficiel.

b. Conclusion 1:

Le séisme est une catastrophe naturelle brusque qui cause des dégâts matériel et humain.

2. L'enregistrement des séismes et la mesure de leur intensité :

L'estimation de l'intensité du séisme se fait par :

- → <u>L'échelle Mercalli ou M.S.K. (Doc.1)</u>: composée de 12 degrés (de I à XII), il est basé sur l'analyse d'un questionnaire distribué aux habitants concernant les dommages provoqués et les effets ressentis par la population après le séisme.
- → <u>L'échelle de Richter (Doc.2)</u>: composée de 9 degrés (de 1 à 9), il est basé sur la mesure des quantités d'énergie libérées par la terre lors d'un séisme. Elle est plus précise que l'échelle M.S.K.

1

a. <u>L'échelle de Mercalli (MSK) :</u>

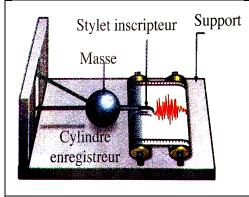
♣ *Activité* [2] :

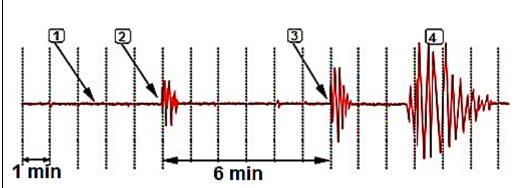
→ Le tableau suivant représente l'échelle M.S.K. (L'échelle de Medvedev-Sponheuer-Karnik), en se basant sur cette échelle répondez aux questions ci-dessous :

Degrés de l'échelle M.S.K.	Dégâts matériels observés			
Degré I	Seuls les sismographes (appareils) les plus sensibles enregistrent les vibrations.			
Degré II	Secousse à peine perceptibles ; quelques personnes au repos ressentent le séisme.			
Degré III	Vibrations comparables à celles provoquées par le passage d'un petit camion.			
Degré IV	Vibrations comparables à celles provoquées par le passage d'un gros camion.			
Degré V	Séisme ressenti en plein air, les dormeurs se réveillent.			
Degré VI	Les meubles sont déplacés.			
Degré VII	Quelques lézardes apparaissent dans les édifices.			
Degré VIII	Les cheminées des maisons tombent.			
Degré IX	Les maisons s'écroulent. Les canalisations souterraines sont cassées.			
Degré X	Destruction des ponts et des digues. Les rails de chemin de fer sont tordus.			
Degré XI	Les constructions les plus solides sont détruites. Grands éboulements.			
Degré XII	Les villes sont rasées. Bouleversement de la topographie. Fissures visibles à la surface.			
(Doc.1) : L'échelle M.S.K.				

→ Questions :

- 1. Comment varie-t-elle l'intensité du séisme du degré *I* au degré *XII* ?
- 2. Trouvez l'intensité du séisme d'Al-Hoceima selon l'échelle de Mercalli à l'aide des images de l'activité 1.
- 3. Est-elle précise l'échelle de M.S.K. ? justifiez votre réponse.
- 4. Proposez une échelle précise que l'échelle de *M.S.K.*


→ Réponses :


- 1. On constate l'augmentation de l'intensité de séisme quand on passe du degré **I** au degré **XII**.
- 2. Selon les images, l'intensité du séisme d'Al-Hoceima est de IX degrés sur l'échelle de M.S.K.
- 3. L'échelle de **M.S.K.** n'est pas précise, car elle se base sur les observations de dégâts matériels causés par le séisme et non pas sur un appareil de mesure.
- 4. On propose comme outil précis l'échelle de Richter.

b. <u>L'échelle de Richter</u>:

♣ Activité [3] :

Les séismes provoquent des vibrations qui se propagent dans toutes les directions de l'espace sous forme <u>d'ondes sismiques</u>. Ces ondes sont enregistrées à l'aide <u>du sismographe (ou sismomètre)</u> (voir Doc.2), on obtient un <u>sismogramme</u> (voir Do.3), qui représente <u>3</u> types des ondes sismiques :

Doc.2: le sismographe

Doc.3: le sismogramme

→ Questions :

- 1. Complétez le document [3], en déterminant les types d'ondes sismiques enregistrées sur le sismogramme (sismomètre).
- 2. Déterminez la succession chronologique des ondes sismiques .
- 3. Par quoi peut-on expliquer la différence du temps d'enregistrement des ondes sismiques sachant qu'elles ont le même point et même temps de départ.
- 4. Comparez l'échelle de M.S.K. et l'échelle de Richter de point de vue : Nombre de degrés, outil de

mesure de l'intensité du séisme et exactitude (précision).

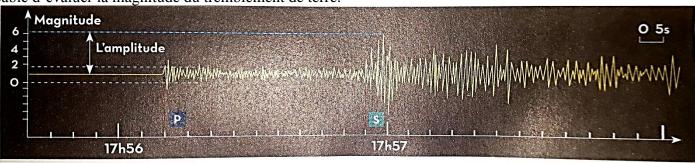
→ Réponse

- 1. [1]: calme sismique, [2]: ondes primaires P, [3]: ondes secondaires S et [4]: ondes longues L.
- 2. Les ondes P arrivent les premiers suivis des ondes S puis les ondes L arrivent les dernières.
- 3. Cette différence est expliquée par la différence de vitesse de propagation : les ondes P sont les plus rapides, les ondes S ont une vitesse moyenne et les ondes L sont les plus lentes.
- 4. Comparaison entre l'échelle M.S.K. et l'échelle de Richter :

Echelles	Nombre de degrés	Outil de mesure de l'intensité du séisme	Exactitude (précision).
M.S.K.	12	Pas d'outil de mesure	Il n'est pas exact
Richter	9	Sismographe = sismomètre	Il est très précis

→ Remarque :

L'échelle de Richter peut reliée à l'échelle de Mercalli (M.S.K.) par la formule suivante :


$$M = 1 + \frac{2I}{3}$$

Avec:

- M : Magnitude du séisme dans l'échelle de Richter
- I : Intensité du séisme dans l'échelle de M.S.K.

→ Exercice d'application :

A partir de l'énergie mécanique dégagée lors d'un séisme, le chercher allemand Richter a pu analyser l'amplitude des enregistrements des ondes sismiques, et dresser une échelle sismique ouverte de 9 degrés, et capable d'évaluer la magnitude du tremblement de terre.

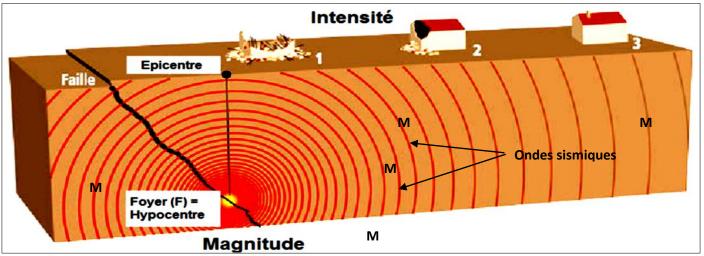
<u>Remarque</u>: l'intensité du séisme (M.S.K.) est liée aux dégâts causés en surface, alors que la magnitude (Richter) exprime l'énergie libérée par le séisme lui-même.

→ Questions :

- 1. *Indiquez* le temps de décalage horaire de l'arrivée des ondes sismiques [P] et [S].
- 2. <u>A quoi</u> correspond le temps mis par les ondes [P] pour atteindre la station d'enregistrement ?
- 3. Comment *expliquez-vous* le temps mis entre l'arrivée des ondes [P] et [S] bien qu'elles partent toutes les deux du même point : Foyer(F).
- 4. <u>Calculez</u> la vitesse de propagation des ondes [P] sachant que la distance séparant la station d'enregistrement du foyer sismique est de 700km.
- 5. A l'aide de l'échelle M.S.K. et de la relation M=1+2I/3, <u>décrivez</u> les dégâts recensés au niveau de l'épicentre.

→ Réponses :

- 1. Le temps de décalage des ondes [S] par rapport aux ondes [P] est de 45 secondes.
- 2. Le temps mis par les ondes [P] pour atteindre la station d'enregistrement correspond à la distance parcourue entre le foyer (origine des ondes) et la station (emplacement du sismographe).
- 3. Le décalage de temps entre l'arrivée des ondes [P] et [S] est lié à la différence de vitesse de propagation.
- 4. La vitesse de propagation des ondes [P] est :
 - •On applique la relation : v=d/t avec v=vitesse, d=distance parcourue et t=unité du temps
 - •D = 700 km et t = 30 secondes donc: v = 700 km/ 30 s = 23.33 km/s
- 5. On applique la relation:


$$M = 1 + \frac{2I}{3}$$
; $M = 6$
 $\frac{3(M-1)}{2} = I$; $\frac{3(6-1)}{2} = I$; $I = 7,5$

Vibrations compatibles à celles provoquées par le passage d'un camion.

3. La différence entre l'épicentre et l'hypocentre (le foyer sismique).

a. Activité 4:

Lors d'un séisme, les ondes P, S et L se propagent dans toutes les directions. Pour déterminer leur origine, on vous propose le schéma suivant :

→ Questions :

- 1. Déterminez la zone qui a connu la plus forte intensité sismique, comment l'appelle-t-on.
- 2. Que représentent les éléments [M] ?
- 3. Déterminez l'origine des ondes sismiques. Qu'appelle-t-on cette zone.
- 4. Comparez la distance entre le point F et les points 1, 2 et 3, puis conclure pourquoi l'épicentre a connu la plus grande intensité du séisme.
- 5. Déduisez la cause du séisme.

* Réponses :

- 6. La zone qui a connu la plus forte intensité sismique est la zone [1], elle s'appelle épicentre.
- 7. Les éléments [M] représentent les ondes sismiques.
- 8. Les ondes sismiques ont pour origine une zone de sous-sol appelée le Foyer [F].
- 9. La distance entre le Foyer et le point 1 est inférieur à la distance entre le foyer et les points 2 et 3, c'est pour cela que l'intensité du séisme est plus grande au point 1 situé dans l'épicentre [E].
- 10. La cause du séisme est une fracture (faille) de roches en profondeur, celle-ci donne naissance aux ondes sismiques qui se propagent dans toutes les directions.

II. L'importance des ondes sismiques dans la détermination de la structure interne de la terre :

1. Les caractéristiques des ondes sismiques :

c. Activité 5:

Les ondes P se propagent selon un mode (compression – dépression) des particules minérales en parallèle avec la direction de leur déplacement, elles se déplacent à la profondeur et dans les milieux solides et liquides.

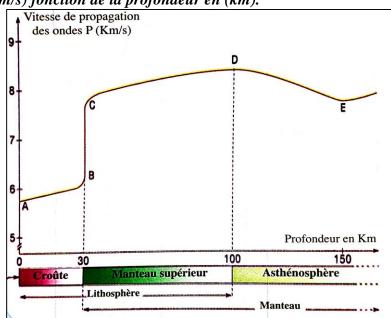
Les ondes S se propagent à l'intérieur du globe terrestre dans les milieux solides uniquement, le déplacement des particules minérales est vertical par rapport à la direction de propagation des ondes. Les ondes L se propagent aux strates superficielles à une vitesse constante. La vitesse de propagation des ondes P et S augmente avec l'augmentation de la densité et la solidité des milieux. La vitesse des ondes P est grande que la vitesse des ondes S et L.

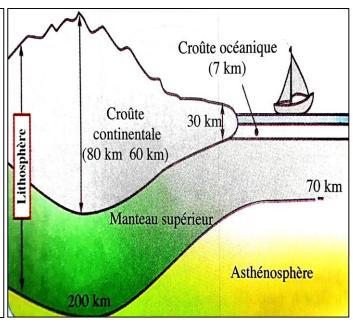
→ Question :

1. Résumer sous forme d'un tableau les caractéristiques des ondes P, S et L (mode de propagation, la vitesse de propagation et l'état physique du milieu de propagation).

→ Réponse :

	L'état physique du milieu de propagation	la vitesse de propagation	mode de propagation
Les ondes P	Solides et liquides	Plus grande que la vitesse des ondes S et L	Compression puis dépression en parallèle avec la direction de propagation des ondes
Les ondes S	Solides uniquement	Inférieure à la vitesse des ondes P et	Le déplacement des particules minérales est vertical par rapport à la


		supérieure à la vitesse des ondes L	direction de propagation des ondes
Les ondes L	Solides superficiels	Moins rapides que les ondes P et ondes S	Propagations analogues aux vagues de l'océan


2. La mise en évidence de l'existence des discontinuités à l'intérieur du globe terrestre.

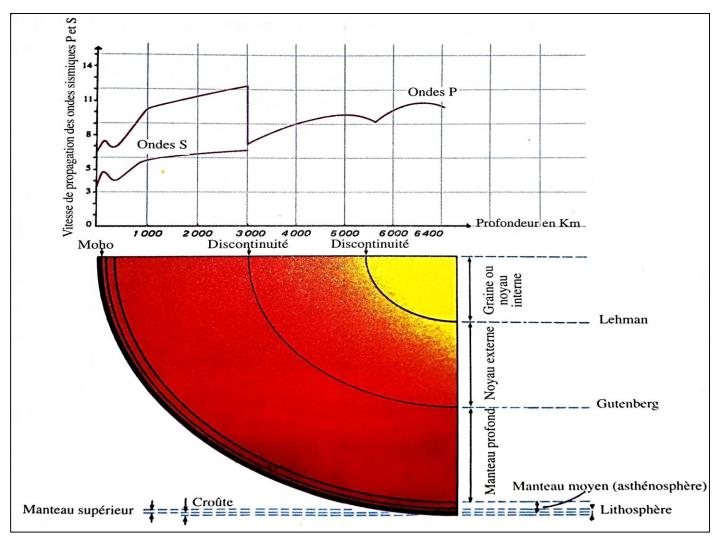
a. Activité 5:

Pour mettre en évidence la structure interne de la terre, les géologues ont étudié la propagation des ondes sismiques. Ils ont constaté notamment que la vitesse des ondes [P]et des ondes [S] varie selon la nature et l'état physique du milieu traversé. Le graphique suivant représente la variation de la vitesse des ondes [P] et [S] en

(km/s) fonction de la profondeur en (km).

→ Questions :

- 1. Analysez la courbe du graphique.
- 2. *Relevez* à partir des documents proposés les profondeurs correspondant aux variations brusques des ondes des vitesses des ondes [P].
- 3. *Proposez* une hypothèse permettant d'expliquer ces variations brusques.


→ Réponses :

- 1. La vitesse des ondes [P] augmente progressivement entre les profondeurs 0 à 30km puis augmente brusquement à la profondeur 30km, puis se stabilise relativement entre 30km et 100km et diminue relativement de 100 à 150km.
- 2. les profondeurs correspondant aux variations brusques des vitesses des ondes [P]:
 - \rightarrow pour les ondes [P]: à ~30km; ~100km puis ~150km
- 3. Il est probable que la variation brusque de vitesses des ondes [P] et [S]est due aux changements de la nature et densités des roches en profondeur.

3. Découvrir la structure interne du globe terrestre

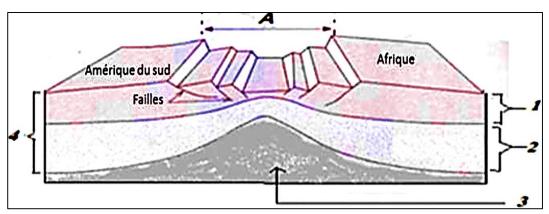
b. Activité 6

Etant donné que la profondeur des forages ne dépasse pas quelques kilomètres, les chercheurs ont procédé à des méthodes indicatrices pour déterminer la structure interne du globe terrestre. La méthode la plus importante se base sur l'étude de la propagation des ondes sismiques.

→ Questions :

- Le document proposé représente les variations brutales de la vitesse de propagation des ondes sismiques. Les zones correspondant à ces variations sont appelées discontinuités. Donnez les noms des discontinuités à partir de ce document.
- 2. Ces discontinuités délimitent, de la surface jusqu'au centre de la terre, quatre enveloppes. Donnez les noms de ces enveloppes à partir du document.
- 3. L'étude de la vitesse des ondes sismiques a montré que les roches de l'asthénosphère sont moins rigides, donc relativement plastiques. En quoi cette propriété est-elle utile pour interpréter la mobilité des plaques lithosphériques.

→ Réponses


- 1. Ces discontinuités sont : discontinuité de Moho, discontinuité Gutenberg et discontinuité de Lehmann.
- 2. Les quatre enveloppes sont : le noyau interne, le noyau externe, le manteau et la croûte.
- 3. Les plaques lithosphériques glissent sur l'asthénosphère plastique.

III. La relation entre les séismes et la tectonique de plaques

1. L'origine des séismes au niveau des dorsales médio-océaniques :

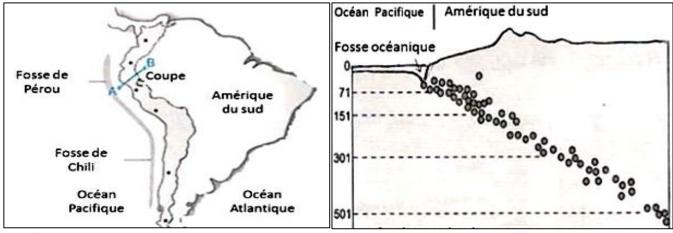
a. Activité 7:

Le document 1 représente la relation qui existe entre la tectonique des plaques et les séismes au niveau des dorsales médio-océaniques.

Doc.1 : la relation entre les séismes et la tectonique des plaques au niveau des dorsales

→ Questions :

- 1. Que représente la zone A.
- 2. Conclure le type du mouvement entre les deux plaques (Afrique, Amérique du sud).
- 3. Donner les noms des l'élément 1, 2, 3 et 4.
- 4. Déterminer l'origine des séismes au niveau de la zone A.


→ Réponses

- 1. La zone A c'est la dorsale médio-océanique.
- 2. Mouvement de divergence ($\leftarrow \rightarrow$).
- 3. les noms des éléments : [1] : croûte océanique, [2] : manteau supérieur, [3] : asthénosphère et [4] : lithosphère.
- 4. L'origine des séismes dans les dorsales médio-océaniques sont les failles issues des mouvements de divergence.

2. L'origine des séismes au niveau des zones de convergence (subduction):

a. Activité 8

Pour expliquer la répartition des foyers des séismes au niveau de la ligne côtière Ouest de l'Amérique du sud, on te propose d'étudier les données des documents 1 et 2.

→ Questions :

- 1. Décrivez la répartition des foyers des séismes au niveau la ligne côtière Ouest d'Amérique du sud.
- 2. *Que devient* la lithosphère au niveau de la zone C.
- 3. *Qu'appelle-t-on* ce phénomène ? quelle est son origine ? et quelles sont ses conséquences ?
- 4. *Déduisez* de ce qui précède la relation entre les séismes et la tectonique des plaques au niveau des zones de subduction.

→ Réponses :

- 1. Les séismes sont repartis tout au long de la côte Ouest de l'Amérique du Sud.
- 2. La lithosphère océanique disparait au niveau de la zone C.
- 3. C'est ce qu'on appelle le phénomène de subduction, son origine sont les forces de convergence et ses conséquences sont les séismes selon le plan de Bénioff.
- 4. Les mouvements de convergence de plaque dans les zones de subduction exercent des force sur les roches ce qui aboutit à des ruptures (failles) et formation de foyers sismiques au niveau desquels naissent les ondes sismiques qui se propagent dans toutes les directions.