BARYCENTRE DANS LE PLAN

1) BARYCENTRE DE DEUX POINTS PONDERES

A) DEFINITION

PROPRIETE

Soit A et B deux points du plan , a et b deux réels tels que $\mathbf{a} + \mathbf{b} \neq \mathbf{0}$.

Il existe un unique point G vérifiant :

$$a \overrightarrow{GA} + b \overrightarrow{GB} = \overrightarrow{0}$$

DEFINITION

Ce point G est appelé <u>barycentre</u> du système {(A , a) ; (B , b) } .

On dit aussi que G est le barycentre des points pondérés ou des points massifs

$$(A,a)$$
 et (B,b) .

- a et b peuvent être négatifs
- Dans la pratique on dit:
- $\ll G$ barycentre de $(A, a), (B, b) \gg$

preuve :

On a:
a
$$\overrightarrow{GA} + b \overrightarrow{GB} = \overrightarrow{0}$$
 \Leftrightarrow a $\overrightarrow{GA} + b (\overrightarrow{GA} + \overrightarrow{AB}) = \overrightarrow{0}$ (d'après la relation de Chasles)
 \Leftrightarrow $(a+b) \overrightarrow{GA} + b \overrightarrow{AB} = 0$
 \Leftrightarrow $(a+b) \overrightarrow{AG} = b \overrightarrow{AB}$
 \Leftrightarrow $(a+b) \overrightarrow{AG} = b \overrightarrow{AB}$
 \Leftrightarrow $\overrightarrow{AG} = \frac{b}{a+b} \overrightarrow{AB}$ (car $a+b \neq 0$)

Ainsi chercher un point G tel que $\overrightarrow{AG} = \overrightarrow{AB} + \overrightarrow{AB} = \overrightarrow{AB}$.

Or, si $a + b \neq 0$, il existe un unique point G tel que $\overrightarrow{AG} = \frac{b}{a+b}$; on en déduit le résultat

<u>Rem :</u> Pour la construction du barycentre, on utilise le fait que $\overrightarrow{AG} = \frac{b}{a+b} \overrightarrow{AB}$.

Si a + b = 0, alors il n'y a pas de barycentre.

Ex: Construire les barycentre suivants :

G2 barycentre de
$$(C, -3), (D, -2)$$

+

B) **PROPRIETES** (Dans la suite on suppose $a + b \neq 0$)

HOMOGENEITE

Si G est le barycentre de (A, a), (B, b), alors, pour tout réel k non nul, G est le barycentre de (A, ka), (B, kb).

preuve:

Pour
$$k \neq 0$$
, on a:

$$a \overrightarrow{GA} + b \overrightarrow{GB} = \overrightarrow{0}$$

$$k (a \overrightarrow{GA} + b \overrightarrow{GB}) = \overrightarrow{0}$$

$$k a \overrightarrow{GA} + k b \overrightarrow{GB} = \overrightarrow{0}$$

 $k a + k b \neq 0$; G est donc aussi le barycentre de (A, ka), (B, kb)

- G1 est aussi le barycentre de (A, 3), (B, 3) $\mathbf{E}\mathbf{x}$: - G2 est aussi le barycentre de (C,9), (D,6) - G3 est aussi le barycentre de (E, -4), (F, 2)

POSITION DU BARYCENTRE

Si G est le barycentre de (A, a), (B, b), alors G est situé sur la droite (AB).

Et réciproquement : tout point de (AB) est barycentre de A et B affectés de coefficients bien déterminés (livre p 241)

Preuve:

$$\overrightarrow{AG} = \frac{b}{a+b}$$
, ainsi \overrightarrow{AG} est colinéaire à \overrightarrow{AB} , donc G est situé sur (AB)

<u>Rem :</u> Si $a = b \ (\neq 0)$, G est appelé <u>isobarycentre</u> de A et de B.

L'isobarycentre des deux points A et B est aussi le milieu du segment [AB].

En regardant d'un peu plus près ...

Idée de Preuve

Si le coefficient de A est nul, alors G et B sont confondus. (de même pour B)	On a , a \overrightarrow{GA} + b \overrightarrow{GB} = $\overrightarrow{0}$ et a = 0 , donc b \overrightarrow{GB} = $\overrightarrow{0}$, c'est à dire \overrightarrow{GB} = $\overrightarrow{0}$ (car b \neq 0)
Si a et b sont de même signe alors $\ G \in [AB]$.	On peut supposer a et b positif. Ainsi $0 < \frac{b}{a+b} < 1$ et $\overrightarrow{AG} = \frac{b}{a+b}$ \overrightarrow{AB}
Si a et b sont de signe contraire alors G appartient à la droite (AB) privé du segment [AB].	On peut supposer $a < 0$ et $b > 0$. Deux cas se présentent : • $a + b < 0$, ainsi $\frac{b}{a + b} < 0$ • $a + b > 0$, or $a + b < b$, ainsi $\frac{b}{a + b} > 1$ On déduit le résultat de $\overrightarrow{AG} = \frac{b}{a + b}$ \overrightarrow{AB}
Si $ a > b $, alors G est « plus près » de A que de B .	On a, a $\overrightarrow{GA} + b$ $\overrightarrow{GB} = \overrightarrow{0}$ donc a $\overrightarrow{GA} = -b$ \overrightarrow{GB} Ainsi a $GA = b GB$, c'est à dire $\frac{GA}{GB} = \frac{ b }{ a }$

• PROPRIETE FONDAMENTALE

Si G est le barycentre de (A, a), (B, b), alors pour tout point M du plan: $\overrightarrow{AM} + \overrightarrow{AM} + \overrightarrow{AM} = (a + b) \overrightarrow{AM}$

Prenve

On a, a
$$\overrightarrow{GA} + \overrightarrow{b} \xrightarrow{\overrightarrow{GB}} = \overrightarrow{0}$$
. Donc pour tout point M du plan, on a:
 $a (\overrightarrow{GM} + \overrightarrow{MA}) + b (\overrightarrow{GM} + \overrightarrow{MB}) = \overrightarrow{0}$ (Chasles
 $\Leftrightarrow (a+b) \overrightarrow{GM} + a \overrightarrow{MA} + b \overrightarrow{MB} = \overrightarrow{0}$
 $\Leftrightarrow a \overrightarrow{MA} + b \overrightarrow{MB} = (a+b) \overrightarrow{MG}$

Rem:

• Si on considère le milieu I de [AB], on retrouve une formule vue en seconde :

Pour tout point M du plan ... $\overrightarrow{MI} = \frac{1}{2} (\overrightarrow{MA} + \overrightarrow{MB})$

• Si M et A sont confondus, on retrouve: $\overrightarrow{AG} = \frac{b}{a+b} \overrightarrow{AB}$; si M et B sont confondus... $\overrightarrow{BG} = \frac{a}{a+b} \overrightarrow{BA}$; ... Un choix judicieux de M, permet une construction facile de G.

C) COORDONNEES DU BARYCENTRE DE DEUX POINTS

Le plan est muni d'un repère (O;
$$\overrightarrow{i}$$
, \overrightarrow{j}). Soit A (x A; y A) et B (x B; y B) deux points du plan. Le barycentre G de (A, a), (B, b) a pour coordonnées :
$$x_G = \frac{1}{a+b} \ (\ a \ x_A + b \ x_B \) \qquad \text{et } y_G = \frac{1}{a+b} \ (\ a \ y_A + b \ y_B \)$$

G a pour abscisse la moyenne pondérée des abscisses de A et B et pour ordonnée la moyenne pondérée des ordonnées de A et B .

Preuve:

On a vu que pour tout point M du plan
$$\overrightarrow{MG} = \frac{1}{a+b}$$
 (a $\overrightarrow{MA} + b$ \overrightarrow{MB})

Pour O en particulier, on a: $\overrightarrow{OG} = \frac{1}{a+b}$ (a $\overrightarrow{OA} + b$ \overrightarrow{OB})

$$= \frac{1}{a+b} (a (x_A \overrightarrow{i} + y_A \overrightarrow{j}) + b (x_B \overrightarrow{i} + y_B \overrightarrow{j})$$

$$= \frac{1}{a+b} (a x_A + b x_B) \overrightarrow{i} + \frac{1}{a+b} (a y_A + b y_B) \overrightarrow{j}$$

Ex:

Dans un repère orthonormé (O; \overrightarrow{i} , \overrightarrow{j}) on a , A (-1; -3) et B (2; 2). Placer le point G barycentre de (A, 1), (B, 3)

2) BARYCENTRE DE 3 POINTS PONDERES ET PLUS ...

A) DEFINITION

L'étude faite au paragraphe précédent se généralise à trois points pondérés , quatre points ou plus.

Nous n'énoncerons la définition et les propriétés que dans le cas de trois points pondérés. (pour le cas général reportez-vous p 244 du livre)

PROPRIETE:

Soit A , B et C trois points du plan , a , b et c trois réels tels que $\mathbf{a} + \mathbf{b} + \mathbf{c} \neq \mathbf{0}$. Il existe un unique point G vérifiant :

$$\overrightarrow{a} \overrightarrow{GA} + \overrightarrow{b} \overrightarrow{GB} + \overrightarrow{c} \overrightarrow{GC} = \overrightarrow{0}$$

Il est donné par ...

$$\overrightarrow{AG} = \frac{1}{a+b+c} (b \overrightarrow{AB} + c \overrightarrow{AC})$$

DEFINITION:

Ce point G est appelé **barycentre** de (A, a), (B, b), (C, c).

Comme dans le cas de deux points pondérés :

• HOMOGENEITE:

Le barycentre ne change pas lorsqu'on multiplie les coefficients par un même nombre non nul .

• ISOBARYCENTRE:

Si $a = b = c \ (\neq 0)$, G est encore appelé **isobarycentre** de A, B et C.

On verra en exercice que si A, B et C ne sont pas alignés alors l'isobarycentre de A, B et C est le centre de gravité du triangle ABC.

• PROPRIETE FONDAMENTALE :

Après quelques calculs, on montre que pour tout point M du plan :

$$\stackrel{\text{diff}}{a} \xrightarrow{MA} + b \overrightarrow{MB} + c \overrightarrow{MC} = (a + b + c) \overrightarrow{MG}$$

Ce qui nous permet de construire G en choisissant judicieusement M. (M = A, M = B, M = C...)

• **COORDONNEES:**

Dans un repère $(O; \overrightarrow{i}, \overrightarrow{j})$, on déduit facilement de la formule ci-dessus les coordonnées de G.

En prenant M = O ...:
$$x_G = \frac{1}{a+b+c} (a x_A + b x_B + c x_c)$$
 et $y_G = \frac{1}{a+b+c} (a y_A + b y_B + c y_c)$

Rem:

Si l'un des coefficient est nul (par exemple c), alors G est le barycentre des deux points pondérés (A, a), (B, b)

B) **BARYCENTRE PARTIEL** on suppose $a + b + c \neq 0$

Si on remplace deux points pondérés (A , a) et (B , b) (avec $a+b\neq 0$) par leur barycentre H affecté du coefficient a+b , alors le barycentre de (A , a) , (B , b) , (C , c) est aussi le barycentre de (C , c) , (H , a+b) .

Preuve:

Soit H le barycentre de (A, a), (B, b).

On a alors $a \stackrel{\cdot}{HA} + b \stackrel{\cdot}{HB} = 0$ Soit G le barycentre de (A, a), (B, b), (C, c).

On a alors $a \stackrel{\cdot}{GA} + b \stackrel{\cdot}{GB} + c \stackrel{\cdot}{GC} = 0$ $\Leftrightarrow a \stackrel{\cdot}{(GH} + \stackrel{\cdot}{HA}) + b \stackrel{\cdot}{(GH} + \stackrel{\cdot}{HB}) + \stackrel{\cdot}{GC} = 0$ $\Leftrightarrow (a+b) \stackrel{\cdot}{GH} + a \stackrel{\cdot}{HA} + b \stackrel{\cdot}{HB} + c \stackrel{\cdot}{GC} = 0$ On en déduit que G est le barycentre de (C, c), (H, a+b).

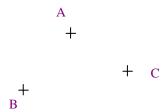
Mais ... quel intérêt ?

Cette propriété permet de ramener la construction du barycentre de trois points (ou plus) , à la construction (connue j'espère) du barycentre de deux points .

Ex:

Soit A , B et C trois points du plan . Construire le barycentre G de (A , 2) , (B , 1) , (C , 1) .

Choisir les combinaisons les plus simples



Rem : Si les coefficients sont de même signe, alors le barycentre est situé à l'intérieur du triangle ABC .