Généralités sur les fonctions

EXERCICE 1

Dans chacune des cas ci-dessous étudier si f et g sont égaux?

1)
$$f(x) = \sqrt{\frac{x}{x-1}}$$
 ; $g(x) = \frac{\sqrt{x}}{\sqrt{x-1}}$

2)
$$f(x) = (\sqrt{x} + \sqrt{x-1})^2$$
 ; $g(x) = (\sqrt{x})^2 + (\sqrt{x-1})^2$

3)
$$f(x) = \frac{x}{1 + \sqrt{x^2 + 1}}$$
 ; $g(x) = \frac{\sqrt{x^2 + 1} - 1}{x}$

On pose $f(x) = \frac{\sqrt{x+1} - \sqrt{2}}{x-1}$ déterminer D_f et montrer que $(\forall x \in D)$ $0 < f(x) < \frac{\sqrt{2}}{2}$

Exercice 3

On considère la fonction f définie par : $f(x) = \frac{x|x|}{x^2 + 1}$

- 1) étudier la parité de f et montrer que $(\forall x \in \mathbb{R}^+)$ $0 \le f(x) < 1$
- 2) en déduire que f est bornée
- 3) a) montrer que pour tous x; y de \mathbb{R}^+ $x \neq y$ on a: $\frac{f(x) f(y)}{x y} = \frac{2(x + y)}{(x^2 + 1)(y^2 + 1)}$
- b) étudier le sens de variation de f su \mathbb{R}^+ puis déduire le sens de variation de f sur \mathbb{R}^-

Exercice 4

On considère la fonction f définie par : $f(x) = \frac{|x|}{x^2 + x + 1}$

- 1) déterminer D_f et montrer que $(\forall x \in D_f)$ $f(x) \le 1$ en déduire que f est bornée
- 2) f admet-elle une valeur minimale? valeur maximale?

3) a) montrer que
$$(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+)$$
 $f(x) - f(y) = \frac{(x-y)(1-xy)}{(x^2+x+1)(y^2+y+1)}$

- b) étudier le sens de variation de f sur [0,1] et $[1,+\infty]$
 - c) en déduire les variations de f sur $\begin{bmatrix} -1,0 \end{bmatrix}$ et $]-\infty,-1 \end{bmatrix}$

1) soit la fonction
$$f$$
 définie par : $f(x) = \frac{2\sqrt{x} - 1}{\sqrt{x} + 1}$

Déterminer deux fonctions g et h telles que $f = g \circ h$ puis étudies

Déterminer deux fonctions g et h telles que $f = g \circ h$ puis étudier le sens de variation de f

2) on considère la fonction
$$f$$
 telle que : $f(x) = \frac{2x^2 + 1}{x^2 + 1}$

Déterminer deux fonctions g et h telles que $f=g\circ h$ puis étudier le sens de variation de f

généralités sur les fonctions

Exercice 6

On considère la fonction f définie par $f(x) = x + \frac{4}{x}$

- 1) Etudier la parité de f
- 2) Montrer que 4 est la valeur minimale de f sur $0,+\infty$
- 3) a) montrer que $\left(\forall (x,y) \in \mathbb{R}^2\right) f(x) f(y) = (x-y)\left(1 \frac{4}{xy}\right)$
 - b) étudier le sens de variation de f sur $\left]0,2\right]$ et $\left[2,+\infty\right[$
 - c) en déduire les variations de f sur \mathbb{R}^{*-}

Exercice 7

Soit f la fonction numérique définie par : $f(x) = 4x^2 + \frac{1}{x}$

- 1) montrer que f admet sur $]0,+\infty[$ un extremum en $\frac{1}{2}$ dont on préciseras la nature
- 2) a) montrer que $(\forall (x,y) \in \mathbb{R}^2)$ $f(x) f(y) = (x-y) \left(4(x+y) \frac{1}{xy}\right)$
- b) étudier les sens de variations de f sur les intervalles $\left]0,\frac{1}{2}\right]$, $\left[\frac{1}{2},+\infty\right[$ et $\left]-\infty,0\right[$
- c) en déduire que $\left(\forall x \in \left[\frac{1}{3}, 1 \right] \right)$ $f(x) \in \left[3, 5 \right]$
- 3) on pose $g(x) = 4x|x| + \frac{1}{x}$

étudier la parité de $\,g\,$ puis étudier les variations de $g\,$

Exercice 8

On considère la fonction f définie par : $f(x) = x^3 - 3x$

- 1) montrer que pour tous x; y de \mathbb{R} et $x \neq y$ on a: $\frac{f(x) f(y)}{x y} = x^2 + y^2 + xy 3$
- 2) étudier le sens de variation de f sur $\begin{bmatrix} 1,+\infty \begin{bmatrix} & & \\ & & \end{bmatrix} -\infty,-1 \end{bmatrix}$ et $\begin{bmatrix} -1,1 \end{bmatrix}$
- 3) soient $a_{_n},.....,a_{_2}\,,a_{_1}$ des réels de $\mathbb{R}^{^+}$ 9 tels que : $~a_1\times a_2\times.....\times a_{_n}=1$

Montrer que $(2 + a_1^3)(2 + a_2^3) \times \dots \times (2 + a_n^3) \ge 3^n$

4) soit *h* la fonction telle que : $h(x) = (x-1)\sqrt{x+2}$

Vérifier que $f(\sqrt{x+2}) = h(x)$ en déduire les variations de h sur $[-1, +\infty[$ et [-2, -1]