Exercice 01:

a et b deux réels strictement positifs.

Comparer les nombres x et y dans les cas suivants:

1.
$$x = \frac{2a+1}{a}$$
 et $y = \frac{a}{2a+1}$

2.
$$x = \frac{1}{a} + \frac{1}{b}$$
 et $y = \frac{2}{a+b}$

Exercice 02:

Soient a et b deux nombres réels tels que :

$$\left| \frac{3a-11}{a-2} \right| < 2$$
 et $\left| \frac{2b-3}{b+1} - 5 \right| < 1$

- 1. Montrer que : 3 < a < 7 et -6 < b < -2
- 2. Encadrer les nombres a+b+1 et ab
- 3. En déduire une comparaison des deux nombres : 2a+b et $\sqrt{3a^2+b^2+3ab}$

Exercice 03:

Déterminer l'intersection et la réunion des deux intervalles I et J, et représenter les sur la droite réelle, dans les cas suivants:

a)
$$I = [-1,3]$$
 et $J = [-2,4]$

b)
$$I = [-4;3]$$
 et $J =]-2;4]$

c)
$$I =]-\infty;1]$$
 et $J =]-1;+\infty[$

d)
$$I =]-2;1]$$
 et $J =]-1;+\infty[$

Exercice 04:

Résoudre les inéquations suivantes:

$$|2x-3|<1$$
; $|2x+1| \le 3$; $|3x+2| \ge 1$

Exercice 05:

 $a\ et\ b$ deux nombres réels tels que :

$$a \ge 1$$
; $b \le 2$ et $a - b = 3$

- 1. Donner la valeur de $X = \sqrt{(a-1)^2} + \sqrt{(b-2)^2}$
- 2. Montrer que : $1 \le a \le 5$ et $-2 \le b \le 2$
- 3. En déduire la valeur de Y = |a+b-7| + |a+b+1|

xercice 06:

a et b deux nombres réels tels que :

$$a-3 < 0$$
; $2b-1 < 0$ et $ab = 1$

1. Donner la valeur de

$$X = \sqrt{(a-3)^2} \sqrt{(1-2b)^2} + a + 6b$$

- 2. Montrer que : $2 \le a \le 3$ et $\frac{1}{3} \le b \le \frac{1}{2}$
- 3. Montrer que : $\frac{3}{7} \le \frac{1}{a-2b} \le 1$
- 4. Montrer que le nombre $\frac{5}{7}$ est une valeur approchée du nombre $\frac{1}{a-2b}$ à $\frac{2}{7}$ près

Exercice 07:

x est nombre réel tel que : $|x-2| < \frac{3}{2}$

- 1. Donner un encadrement de x
- 2. Montrer que |2x-3| < 7
- 3. Vérifier que $2x^2 7x + 6 = (2x 3)(x 2)$
- 4. En déduire que $|2x^2 7x + 6| < \frac{21}{2}$
- 5. Montrer que $\left| \frac{x-2}{2x+3} \right| < \frac{3}{8}$

Exercice 08:

Montrer que si le nombre $\frac{1}{2}$ est une valeur approchée de x à 10^{-2} près, alors le nombre 2 est une valeur approchée de $\frac{1}{x}$ à 4.10^{-2}

Exercice 09:

Pour tout x de $[1;+\infty[$, on pose $A = \sqrt{1+\frac{1}{x}}$

- 1. Montrer que $A-1 = \frac{1}{x(A+1)}$
- 2. Montrer que $2 \le 1 + A \le 3$, en déduire que $1 + \frac{1}{3x} \le A \le 1 + \frac{1}{2x}$
- 3. En déduire que $\frac{11}{10}$ est une valeur approchée par défaut de $\sqrt{1,2}$ d'amplitude $\frac{1}{30}$

Exercice 10:

Soit x un nombre réel.

On pose $A = x^2 + 6x + 5$

- 1. Vérifier que: $A = (x+3)^2 4$
- 2. Si 2,03 est une valeur approchée de x par défaut d'amplitude 10^{-2} alors , Donner un encadrement de A d'amplitude 1005.10^{-4}