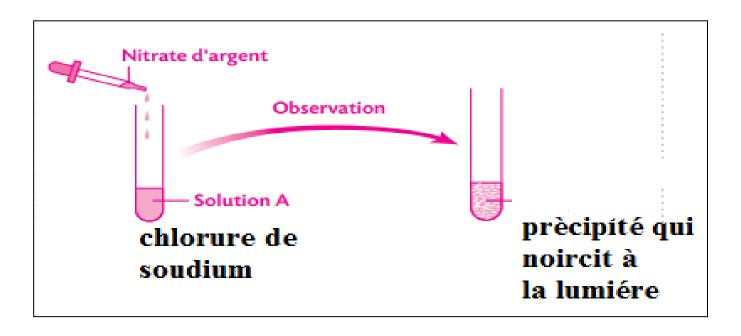
Prof: Aziz Ouarda

Lycée qualifiant Hassan II Direction provinciale : Azilal

Tests d'identification de quelques ions

Tests d'identification de quelques ions

I. Les formules ioniques de quelques solutions :


Les solutions aqueuses contiennent de ions positifs et négatifs comme :

Nom de la solution	formule ionique
Solution de chlorure d'hydrogène (acide chloridrique)	(H+ + Cl ⁻)
Solution d'hydroxyde de sodium (soude)	$(Na^+ + HO^-)$
Solution de nitrate d'argent	$(\mathbf{Ag^+} + \mathbf{NO_3^-})$

II. Test d'identification des ions chlorure

A- Expérience :

On verse quelques gouttes de nitrate d'argent de formule chimique $(Ag^+ + NO_3^-)$ dans des tubes à essai Contenant chlorure de sodium $(Na^+ + Cl^-)$:

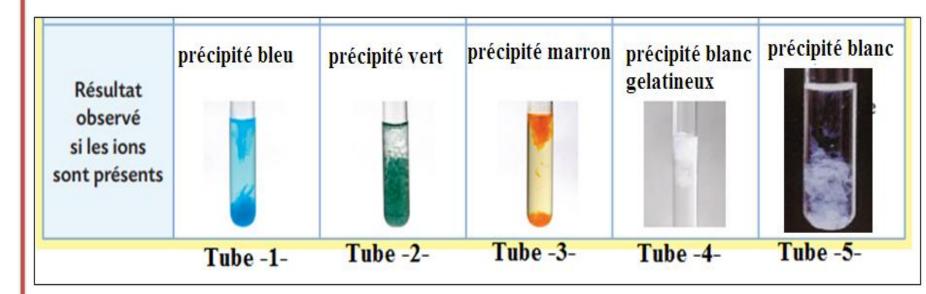
B - Observation et conclusion :

- On observe la formation d'un précipité de couleur blanche qui noircie à la lumière (le chlorure d'argent de formule chimique AgCl) qui confirme la présence des ions de chlorure Cl.
- Equation de formation de précipité :

$$Ag^+ + Cl^- \longrightarrow AgCl$$

Remarque:

- L'ion d'argent Ag^+ est appelé ion détecteur des ions Cl-.
- Solution de nitrate d'argent $(Ag^+ + NO_3^-)$: solution détectrice


III- Test d'identification des ions métalliques :

A- Expérience :

On verse quelques gouttes de soude (hydroxyde de sodium) de formule chimique ($Na^+ + OH^-$) dans 5 tubes à essai contenant les solutions suivantes :

- Tube 1 : solution de sulfate de cuivre $(Cu^{2+} + SO_4^{2-})$
- Tube 2 : sulfate de fer II $(Fe^{2+} + SO_4^{2-})$
- Tube 3: solution de chlorure de fer III: $(Fe^{3+} + 3Cl^{-})$
- Tube 4 : solution de chlorure de zinc ($Zn^{2+}+2Cl^{-}$)
- Tube 5 : solution de chlorure d'aluminium ($Al^{3+}+3Cl^{-}$)

B-Observation:

C- Conclusion:

La solution d'hydroxyde de sodium (solution détecteur) utilisé dans la détection des ions cuivre II (Cu^{2+}), fer II (Fe^{2+}), fer III (Fe^{3+}), zinc (Zn^{2+}) et aluminium (Al^{3+})

Ion à identifier	Solution détecteur	Couleur du précipité	Nom et formule du précipité	Équation de la réaction de précipitation
Cuivre (II) Cu ²⁺	Solution d'Hydroxyde de sodium (Na+ + OH-)	Bleu	Hydroxyde de cuivre II Cu (OH) ₂	$Cu^{2+} + 2OH^{-} \rightarrow Cu (OH)_{2}$
Fer (II) Fe ²⁺		Vert	Hydroxyde de fer II Fe (OH) ₂	$Fe^{2+} + 2 OH^{-} \rightarrow Fe (OH)_{2}$
Fer (III) Fe ³⁺		Rouille	Hydroxyde de fer III Fe (OH) ₃	$Fe^{3+} + 3 OH^{-} \rightarrow Fe (OH)_{3}$
Zinc Zn ²⁺		Blanc gélatineux	Hydroxyde de zinc Zn (OH) ₂	$Zn^{2+} + 2 OH^{-} \rightarrow Zn (OH)_{2}$
Aluminium Al ³⁺		Blanc	Hydroxyde d'aluminium Al (OH)3	$A\ell^{3+} + 3 \text{ OH}^{-} \rightarrow A\ell(\text{OH})_{3}$