Cours avec Exercices avec solutions PROF: ATMANI NAJIB Tronc commun littéraire

http://www.xriadiat.com Leçon4: statistiques

Statistiques

Présentation globale

- Tableaux statistiques ;L'effectif, la fréquence, les pourcentages, L'effectif cumulé, les fréquences cumulées :
- Représentations graphiques : diagramme en bâtons, diagramme en rubans, diagramme sectoriel, histogrammes ;
- Paramètres de position, la moyenne, le mode(ou la dominante);
- Paramètres de dispersion: l'écart moyen, la variance, l'écart type.

Capacités attendues

- Organiser des données statistiques ;
- Lire des tableaux et des diagrammes statistiques ;
- Calcul et interprétation des paramètres statistiques.

Recommandations pédagogiques

- On se basera sur des exemples de la vie courante ou issus des autres disciplines (Histoire Géo, Biologie, Chimie...), des situations authentiques, afin d'initier les élèves à collecter des données statistiques, les organiser dans des tableaux et les représenter graphiquement;
- Le calcul des paramètres statistiques et leurs interprétations, se fera dans le but de répondre à des questions liées à l'étude de phénomènes et à faire des déductions.

1. Population statistique / Caractère:

1) Etude d'exemples: Regardons les exemples suivants:

Exemple 1: L'étude suivante donne les notes de 20 élèves :

$$9-8-10-12-10-8-15-18-16-15-12-12-10-10-9-8-15-12-8-10$$

$x_7 = 18$	$x_6 = 16$	$x_5 = 15$	$x_4 = 12$	$x_3 = 10$	$x_2 = 9$	$x_1 = 8$	Note
$n_7 = 1$	$n_6 = 1$	$n_5 = 3$	$n_4 = 4$	$n_3 = 5$	$n_2 = 2$	$n_1 = 4$	Effectif
·							
20	19	18	15	11	6	4	Effectif
							cumulé

Exemple:2

Les vitesses de 150 voitures ont été détectée s sur l'autoroute entre Rabat et Casa, on a obtenu le tableau suivant :

[130,150[[110,130[[90, 110[[70,90[[50,70[Vitesse
15	25	60	40	10	Effectif
150	135	110	50	10	Effectif cumulé

Exemple :3

le tableau ci-dessous représente le nombre de buts par match durant la Coupe du monde de football de 2010 :

Nombre de buts x_i	0	1	2	3	4	5	6	7
Nombre de matchs n_i	7	17	13	14	8	6	0	1

Les valeurs x_i du caractère étudié sont les "nombres de buts". Les effectifs n_i correspondants sont les "nombres de matchs".

2) **Définitions :**

Population statistiaque:

La population statistique est l'ensemble qui fait l'objet de l'étude. et chaque élément de cet ensemble est

x_7	x_6	X_5	X_4	x_3	x_2	x_1	Note
n_7	n_6	n_5	n_4	n_3	n_2	n_1	Effectif

appelé « individu » ou « unité statistique »

Dans exemple 1 la population statistique est l'ensemble des élèves. Dans

exemple2 : la population statistique est l'ensemble des voitures.

<u>Caractère</u>: la propriété qu'on veut étudier "chez une population statistique s'appelle « le caractère » ou « la variable statistique ». " le caractère peut être quantitatif ou qualitatif.

Le caractère quantitatif est un caractère qui peut s'exprimer par des nombres

(Dans exemple 1 c'est la note)

on distingue le caractère quantitatif discret et le caractère quantitatif continu.

Caractère discret:

Le caractère quantitatif discret est celui qui prend des valeurs isolées, comme les notes des élève (dans exemple1) ou le numéro du mois de naissance d'un élève par exemple.

<u>Caractère continu</u>: Le caractère quantitatif continu est celui qui prend des valeurs très proches, dans ce cas les valeurs du caractère sont rassemblées dans des intervalles qu'on appelle aussi des « classes », comme les hauteurs des élèves par exemple.

2) <u>Caractère quantitatif</u>: Le caractère qualitatif est un caractère qui ne peut pas s'exprimer par des nombres, comme la couleur du cheveu des élèves ou leur groupe sanguin ou leur sexe.

II.Effectif – fréquence– pourcentage

 n_i est appelé « Effectif» relative à la valeur X_i

 $N = n_1 + n_2 + n_3 + n_4 + n_5 + n_6 + n_7$ Le nombre N représente l'effectif total.

$$f_i = \frac{n_i}{N}$$
 est appelé « fréquence » relative à la valeur \mathcal{X}_i et

 $p_i = 100 f_i$ est appelé le pourcentage relatif à la valeur \mathcal{X}_i

Dans exemple 1
$$N = n_1 + n_2 + n_3 + n_4 + n_5 + n_6 + n_7 = 20$$

 $p_1 = f_1 \times 100 = \frac{100}{5} = 20\%$ est appelé le pourcentage relatif à la valeur X_1

Paramètres de position

1) le mode: c'est la valeur du caractère ou la classe correspondant au plus fort effectif.

Dans exemple1: le mode est la note $x_a = 12$

Dans exemple2: la classe modale est la classe [90,110[

Dans exemple3: le mode est Nombre de buts1

2) Moyenne

La <u>moyenne</u> x d'une série statistique dont les valeurs du caractère sont $x_1, x_2, x_3, ..., x_k$ et les effectifs correspondants sont $n_1, n_2, n_3, ..., n_k$ est égale à :

$$\overline{x} = \frac{x_1 \times n_1 + x_2 \times n_2 + ... + x_k \times n_k}{n_1 + n_2 + ... + n_k}$$

Exemple:

Dans exemple1

La moyenne de NOTES est égale à :

$$\overline{x} = \frac{8 \times 4 + 9 \times 2 + 10 \times 5 + 12 \times 4 + 15 \times 3 + 16 \times 1 + 18 \times 1}{20} = \frac{227}{20} \approx 11,35$$

Dans exemple3

La moyenne de buts par match est égale à :

$$\overline{x} = \frac{7 \times 0 + 17 \times 1 + 13 \times 2 + 14 \times 3 + 8 \times 4 + 6 \times 5 + 0 \times 6 + 1 \times 7}{7 + 17 + 13 + 14 + 8 + 6 + 1} = \frac{154}{66} \approx 2,3$$

3) Médiane

Pour obtenir la <u>médiane</u> d'une série, on range les valeurs de la série dans l'ordre croissant. La médiane est la valeur qui partage la série en deux populations d'effectif égal.

Exemple: Dans exemple3

L'effectif total est égal à 66. La médiane se trouve donc entre la 33^e et 34^e valeur de la série.

On écrit les valeurs de la série dans l'ordre croissant :

1

La 33^e et la 34^e valeur sont égales à 2. La médiane est donc également égale à 2.

On en déduit que durant la Coupe du monde 2010, il y a eu autant de matchs dont le nombre de buts était supérieur à 2 que de matchs dont le nombre de buts était inférieur à 2.

Remarque :La médiane

On considère une liste de N données rangées par ordre croissant.

Si la série est de taille **impaire** (N=2n+1), la *médiane* est la donnée de rang n+1.

Si la série est de taille **paire** (N=2n), la *médiane* est la demi-somme des données de rang n

et de rang n+1.

III. Paramètres de dispersion

1) **Etendue:**

C'est la différence entre les valeurs extrêmes.

Dans l'exemple 1, la valeur minimale est 8 et la valeur maximale est 18, donc l'étendue est égale à 18-8=10

Remarque : l'étendue est un enregistrement utile pour constater la dispersion de la série.

2) **Ecart-moyen:**C'est la moyenne des écarts à la moyenne

L'écart-moyen e d'une série statistique de moyenne x dont les valeurs du caractère sont $x_1, x_2, x_3, ..., x_k$ et les effectifs correspondants sont $n_1, n_2, n_3, ..., n_k$ est égale à :

$$e = \frac{n_1 \times \left| x_1 - \overline{x} \right| + n_2 \times \left| x_2 - \overline{x} \right| + \dots + n_k \times \left| x_k - \overline{x} \right|}{n_1 + n_2 + \dots + n_k}$$

3) Variance

<u>Définitions</u>: La <u>variance</u> V d'une série statistique de moyenne x dont les valeurs du caractère sont x_1, x_2 $x_3, ..., x_k$ et les effectifs correspondants sont $n_1, n_2, n_3, ..., n_k$ est égale à :

$$V = \frac{n_1 \times (x_1 - \overline{x})^2 + n_2 \times (x_2 - \overline{x})^2 + \dots + n_k \times (x_k - \overline{x})^2}{n_1 + n_2 + \dots + n_k}$$

- L'<u>écart-type</u> σ d'une série statistique de variance V est égal à : $\sigma = \sqrt{V}$

Exemple: Dans exemple3

la variance est égale à :

$$V = \frac{7 \times \left(0 - \frac{7}{3}\right)^2 + 17 \times \left(1 - \frac{7}{3}\right)^2 + 13 \times \left(2 - \frac{7}{3}\right)^2 + 14 \times \left(3 - \frac{7}{3}\right)^2 + 8 \times \left(4 - \frac{7}{3}\right)^2 + 6 \times \left(5 - \frac{7}{3}\right)^2 + 0 \times \left(6 - \frac{7}{3}\right)^2 + 1 \times \left(7 - \frac{7}{3}\right)^2}{66}$$

$$\approx 2.4646$$

L'écart-type est
$$\sigma \approx \sqrt{2,4646} \approx 1,57$$

Ainsi l'écart-type est environ égal à 1,57 buts.

<u>Remarque</u>: L'écart-type exprime la dispersion des valeurs d'une série statistique autour de sa moyenne. Les valeurs extrêmes influencent l'écart-type.

Exemple: Soit la série statistique suivante

7	2	1	Caractère
1	4	5	Effectif

La moyenne est :
$$m = \frac{5 \times 1 + 4 \times 2 + 1 \times 7}{10} = \frac{20}{10} = 2$$

L'écart-moyen est égale à :

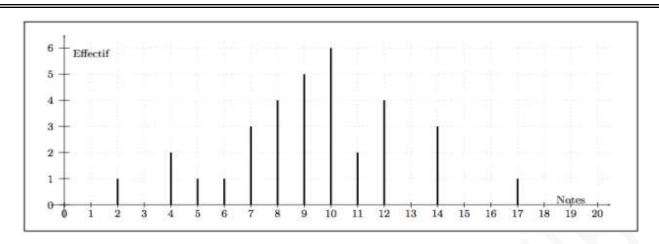
$$e = \frac{5 \times |1 - 2| + 4|2 - 2| + 1 \times |7 - 2|}{10} = \frac{5 \times |-1| + 4|0| + 1 \times |5|}{10}$$

$$e = \frac{5 \times 1 + 4 \times 0 + 1 \times 5}{10} = \frac{10}{10} = 1$$

La variance V est égale à :

$$V = \frac{5 \times |1 - 2|^2 + 4|2 - 2|^2 + 1 \times |7 - 2|^2}{10} = \frac{5 \times |-1|^2 + 4|0|^2 + 1 \times |5|^2}{10}$$

$$V = \frac{5 \times 1 + 4 \times 0 + 1 \times 25}{10} = \frac{30}{10} = 3$$


L'écart-type est égale à : $\sigma = \sqrt{V} = \sqrt{3}$

IV. Représentations graphiques :

1) Diagramme en bâtons

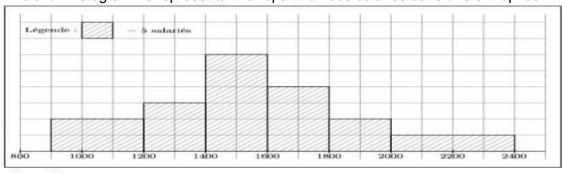
Lorsque le caractère étudié est quantitatif discret, on peut représenter la séri statistique par un diagramme en bâtons : La hauteur de chaque bâton est proportionnelle à l'effectif (ou la fréquence) associée à chaque valeur.

Exemple : Voici le diagramme en bâtons représentant une série de notes obtenues par une classe à un contrôle.

Recopiez et complétez le tableau suivant :

Notes	2	4	5	6	7	8	9	10	11	12	14	17	Total
Effectif													
pourcentage %)													

Solution:


Notes	2	4	5	6	7	8	9	10	11	12	14	17	Total
Effectif	1	2	1	1	3	4	5	6	2	4	3	1	33
pourcentage(%)	3%	6%	3%	3%	9%	12%	15%	18%	6%	12%	0%	3%	100%

2)Histogramme

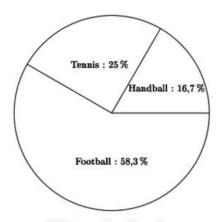
Lorsque le caractère étudié est quantitatif continu, et lorsque les données sont regroupées en classes, on peut représenter la série par un histogramme : l'aire de chaque rectangle est alors proportionnelle à l'effectif (ou a la fréquence) associée à chaque classe.

Lorsque les classes ont la même amplitude, c'est la hauteur de chaque rectangle qui est proportionnelle à l'effectif.

Exemple : Voici un histogramme représentant la répartition des salaires dans une entreprise :

Recopier et compléter le tableau ci-dessous :

Salaires	[900;1200[[1200;1400[[1400;1600[[1600;1800[[1800;2000[[2000;2400[Total
Effectif							
Fréquence							


Solution

Salaires	[900;1200[[1200;1400[[1400;1600[[1600;1800[[1800;2000[[2000;2400[Total
Effectif	30	30	60	40	20	20	200
Fréquence	0,15	0,15	0,3	0,2	0,1	0,1	1

3)diagramme circulaire ou semi-circulaire

Lorsque le caractère est qualitatif, on représente la série par un diagramme circulaire ou semi-circulaire (camembert) : La mesure de chaque secteur angulaire est proportionnelle à l'effectif (ou à la fréquence) associée à la valeur du caractère.

Exemple : Voici un diagramme circulaire représentant la répartition des adhérents à un club sportif.

Sachant que le club compte 240 adhérents, combien d'adhérents jouent ...

- Au football ?
- Au tennis?
- Au handball?

Solution :On multiplie l'effectif total (240) par la fréquence de chaque caractère indiquée dans le camembert pour obtenir l'effectif du caractère. Ainsi :

Football: 240 * 0,583 = 140
Tennis: 240 * 0,25 = 60
Handball: 240 * 0,167 = 40

« C'est en forgeant que l'on devient forgeron » Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices Que l'on devient un mathématicien

