MANTI

DEVOIR 2

1 ère BAC

EXERCICE 1

On considère la fonction f définie sur $\mathbb R$ par $f(x)=\frac{x^2+2x-3}{x^2-2x+3}$; soit (C) la courbe de f dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$

- 1) étudier les branches infinies de la courbe (C)
- 2) étudier la position de (C) par rapport à la droite (D) : y=1
- 3) a) montrer que $(\forall x \in \mathbb{R})$ $f'(x) = \frac{4(-x^2 + 3x)}{(x^2 2x + 3)^2}$
 - $\ensuremath{\mathfrak{b}}$) dresser le tableau de variations de f
- 4) tracer la courbe (C)

EXERCICE 2

Soit f la fonction définie par : $f(x) = \frac{x^3 - 4x}{x^2 - 1}$

et soit (C) la courbe de f dans un repère orthonormé $\left(O, \vec{i}, \vec{j}\right)$

- 1) déterminer D le domaine de définition de f et montrer que f est une fonction impaire
- 2) calculer les limites $\lim_{x \to +\infty} f(x)$, $\lim_{\substack{x \to 1 \\ x > 1}} f(x)$ et $\lim_{\substack{x \to 1 \\ x < 1}} f(x)$
- 3) a) vérifier que $(\forall x \in D)$ $f(x) = x \frac{3x}{x^2 1}$
 - b) en déduire l'équation de l'asymptote oblique à la courbe (C) en $+\infty$
 - c) étudier la position relatif de (C) et la droite (Δ) y=x
- 4) a) montrer que $(\forall x \in D)$ $f'(x) = 1 + \frac{3(x^2 + 1)}{(x^2 1)^2}$
 - \mathfrak{b}) étudier les variations de f puis donner le tableau de variations
- 5) a) prouver que $(\forall x \in D)$ $f''(x) = \frac{-6x(x^2+3)}{(x^2-1)^3}$
 - b) étudier la concavité de la courbe (C)
- 6) tracer la courbe (C)
- 7) soit m un paramètre réel .

déterminer graphiquement suivant m le nombre de solutions de l'équation $x^2 \, (x-m) = 4x - m$