Corrigés des exercices de trigonométrie

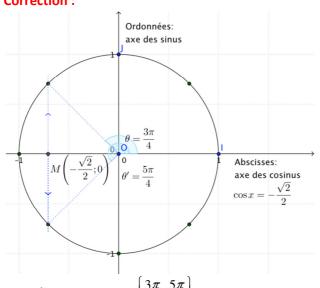
Résoudre algébriquement des équations, des inéquations

Pour les exercices suivants, on utilisera le cercle trigonométrique

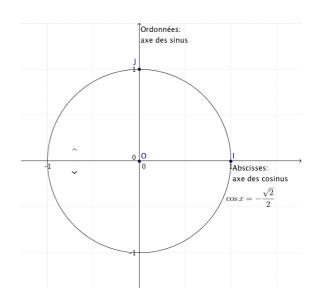
Exercice 1

Résoudre dans l'intervalle $[0; 2\pi]$ l'équation $\cos x = -\frac{\sqrt{2}}{2}$.

Correction:



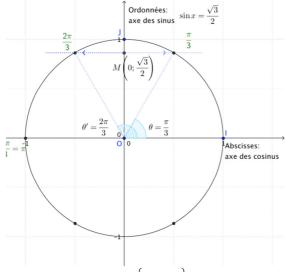
Les solutions sont $S = \left\{ \frac{3\pi}{4}; \frac{5\pi}{4} \right\}$



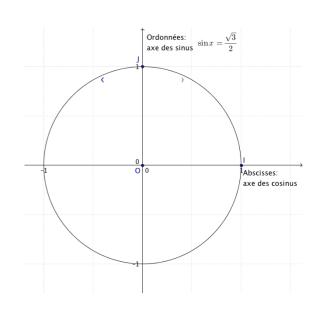
Exercice 2

Résoudre dans l'intervalle $[0;2\pi]$ l'équation $\sin x = \frac{\sqrt{3}}{2}$.

Correction:



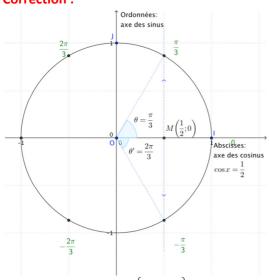
Les solutions sont $S = \left\{ \frac{\pi}{3}; \frac{2\pi}{3} \right\}$



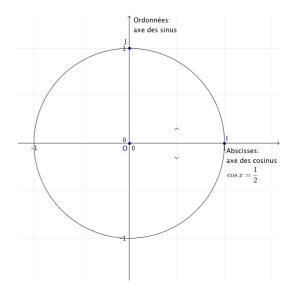
Exercice 3

Résoudre dans l'intervalle $]-\pi$; π] l'équation $\cos x = \frac{1}{2}$.

Correction:



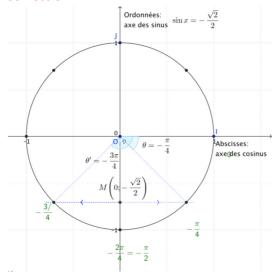
Les solutions sont
$$S = \left\{-\frac{\pi}{3}; \frac{\pi}{3}\right\}$$

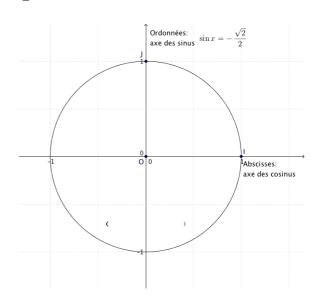


Exercice 4

Résoudre dans l'intervalle $]-\pi$; π] l'équation $\sin x = -\frac{\sqrt{2}}{2}$.

Correction:

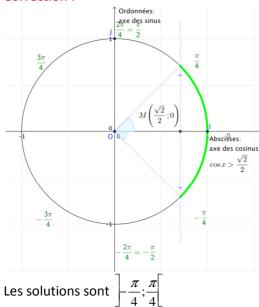


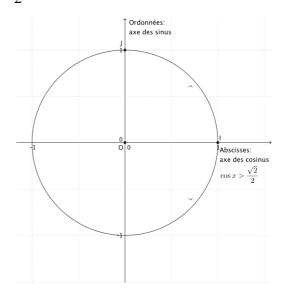


Exercice 5

Résoudre dans l'intervalle $]-\pi$; π] l'inéquation $\cos x > \frac{\sqrt{2}}{2}$.

Correction:



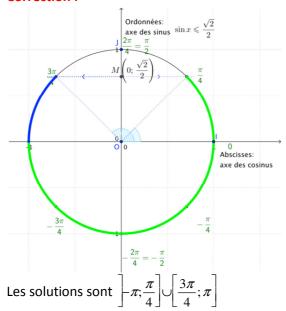


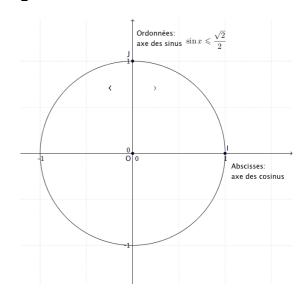
€

Exercice 6

Résoudre dans l'intervalle $]-\pi$; π] l'inéquation $\sin x \le \frac{\sqrt{2}}{2}$.

Correction:



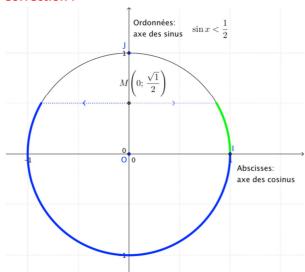


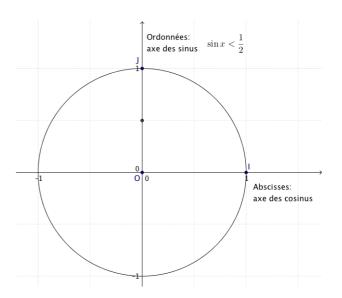
€

Exercice 7

Résoudre dans l'intervalle $\left[0;2\pi\right]$ l'inéquation $\sin x < \frac{1}{2}$.

Correction:

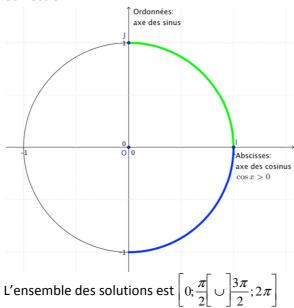


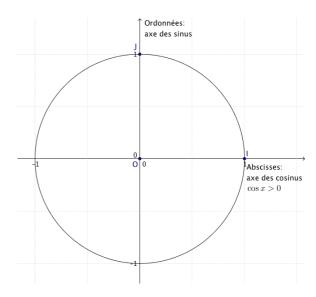


Exercice 8

Résoudre dans l'intervalle $\left[0\;;2\pi\;\right]$ l'inéquation $\cos x>0$.

Correction:





€

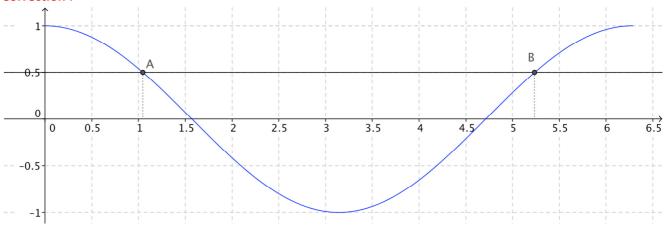
II. Résoudre graphiquement des équations

Exercice 9

On a tracé sur l'intervalle $\begin{bmatrix} 0 \ ; 2\pi \end{bmatrix}$ la représentation graphique de la fonction cosinus.

Résoudre graphiquement dans l'intervalle $\left[0;2\pi\right]$ l'équation $\cos x = \frac{1}{2}$.

Correction:



Graphiquement, on lit que les solutions sont $x_1 \approx 1,05$ (soit $x_1 = \frac{\pi}{3}$) et $x_2 \approx 5,25$ (soit $x_2 = \frac{5\pi}{3}$).

€

€

€

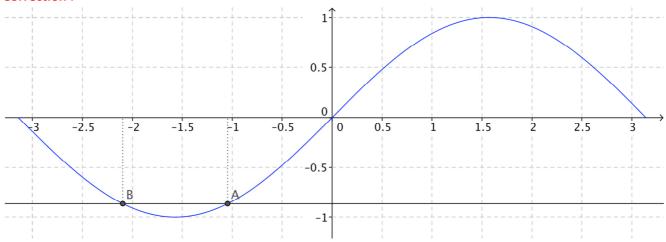
€

Exercice 10

On a tracé sur l'intervalle $\left]-\pi \right.$; $\left.\pi \right.$] la représentation graphique de la fonction sinus.

Résoudre graphiquement dans l'intervalle $]-\pi$; π] l'équation $\sin x = -\frac{\sqrt{3}}{2}$.

Correction:



Graphiquement, on lit que les solutions sont $x_1 \approx -1,05$ (soit $x_1 = -\frac{\pi}{3}$) et $x_2 \approx -2,1$ (soit $x_2 = -\frac{2\pi}{3}$).

III. Etudier le signe d'une expression

Exercice 11

On considère la fonction définie sur $[0; 2\pi]$ par $f(x) = 2\sin x + 1$.

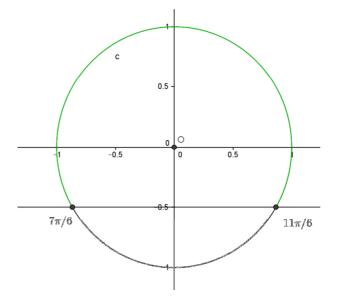
- a. Résoudre, en utilisant le cercle trigonométrique, l'inéquation $\sin x > -\frac{1}{2}$ sur l'intervalle $[0; 2\pi[$.
- b. En déduire le signe de f(x) sur $\left[0\;;\;2\pi\right[$.

Correction:

a. L'ensemble des solutions de

l'inéquation
$$\sin x > -\frac{1}{2} \sin x$$

$$[0; 2\pi[\text{ est } \left[0; \frac{7\pi}{6}\right] \cup \left]\frac{11\pi}{6}; 2\pi\right]$$



b. $f(x) > 0 \Leftrightarrow 2\sin x + 1 > 0 \Leftrightarrow 2\sin x > -1 \Leftrightarrow \sin x > -\frac{1}{2}$.

On en déduit alors le signe de $\,f(x)\,$ sur $\left[0\ ;\, 2\pi\right[$, en utilisant a. :

х	0	$\frac{7\pi}{6}$	$\frac{11\pi}{6}$	21	τ
f(x)	+	0 _	0	+	

Exercice 12

On considère la fonction définie sur $\left] -\pi ; \pi \right]$ par $f(x) = 2\cos x - \sqrt{3}$.

a. Résoudre, en utilisant le cercle trigonométrique, l'inéquation $\cos x > \frac{\sqrt{3}}{2}$ sur l'intervalle $\left[-\pi;\pi\right]$.

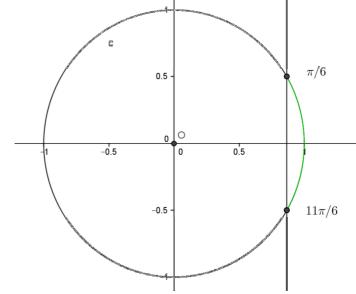
b. En déduire le signe de f(x) sur $]-\pi$; π].

Correction:

a. L'ensemble des solutions de

l'inéquation
$$\cos x > \frac{\sqrt{3}}{2}$$
 sur

$$\left[0; 2\pi\right[\operatorname{est}\left[0; \frac{\pi}{6}\right] \cup \left]\frac{11\pi}{6}; 2\pi\right[$$



b.
$$f(x) > 0 \Leftrightarrow 2\cos x - \sqrt{3} > 0 \Leftrightarrow 2\cos x > \sqrt{3} \Leftrightarrow \cos x > \frac{\sqrt{3}}{2}$$
.

On en déduit alors le signe de $\,f(x)\,\,{\rm sur}\, \big[0\,\,;\, 2\pi\big[$, en utilisant a. :

X	0	$\frac{\pi}{6}$	$\frac{11\pi}{6}$	2π	
f(x)	+	0	_ 0	+	

Exercice 13

On considère la fonction définie sur $\left] - \pi ; \pi \right]$ par $f(x) = \cos \left(2x + \frac{\pi}{3} \right)$.

a. Résoudre dans
$$]-\pi$$
; π] l'équation $\cos\left(2x+\frac{\pi}{3}\right)=0$.

b. En déduire le signe de
$$f(x)$$
 sur $]-\pi$; π $]$.

Correction:

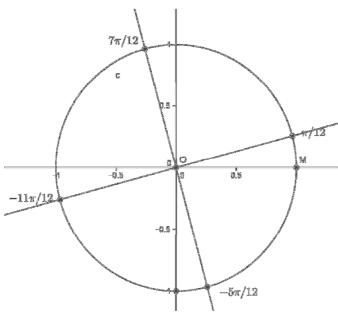
$$\cos\left(2x + \frac{\pi}{3}\right) = 0 \Leftrightarrow 2x + \frac{\pi}{3} = \frac{\pi}{2} + k2\pi \quad \text{ou} \quad 2x + \frac{\pi}{3} = -\frac{\pi}{2} + k2\pi \quad (k \in \mathbb{Z})$$

$$\Leftrightarrow 2x = \frac{\pi}{2} - \frac{\pi}{3} + k2\pi \quad \text{ou} \quad 2x = -\frac{\pi}{2} - \frac{\pi}{3} + k2\pi \quad (k \in \mathbb{Z})$$

$$\Leftrightarrow 2x = \frac{\pi}{6} + k2\pi \quad \text{ou} \quad 2x = -\frac{5\pi}{6} + k2\pi \quad (k \in \mathbb{Z})$$

$$\Leftrightarrow x = \frac{\pi}{12} + k\pi \quad \text{ou} \quad x = -\frac{5\pi}{12} + k\pi \quad (k \in \mathbb{Z})$$

Dans l'intervalle $]-\pi$; π], les solutions sont $-\frac{11\pi}{12}$; $-\frac{5\pi}{12}$; $\frac{\pi}{12}$; $\frac{7\pi}{12}$.



Sur l'intervalle $\left[-\pi; -\frac{11\pi}{12}\right]$,

$$-\pi < x < -\frac{11\pi}{12} \text{ puis} - 2\pi < 2x < -\frac{11\pi}{6} \text{ et } -2\pi + \frac{\pi}{3} < 2x + \frac{\pi}{3} < -\frac{11\pi}{6} + \frac{\pi}{3} \text{ donc}$$

$$-\frac{7\pi}{3} < 2x + \frac{\pi}{3} < -\frac{3\pi}{2} \text{ et } \cos\left(2x + \frac{\pi}{3}\right) > 0 ;$$

Sur l'intervalle
$$\left] -\frac{11\pi}{12}; -\frac{5\pi}{12} \right[$$
,
$$-\frac{11\pi}{12} < x < -\frac{5\pi}{12} \text{ puis} -\frac{11\pi}{6} < 2x < -\frac{5\pi}{6} \text{ et } -\frac{11\pi}{6} + \frac{\pi}{3} < 2x + \frac{\pi}{3} < -\frac{5\pi}{6} + \frac{\pi}{3} \text{ donc} \right]$$
$$-\frac{3\pi}{2} < 2x + \frac{\pi}{3} < -\frac{\pi}{2} \text{ et } \cos\left(2x + \frac{\pi}{3}\right) < 0;$$

Sur l'intervalle
$$\left] -\frac{5\pi}{12}; \frac{\pi}{12} \right[$$
,
$$-\frac{5\pi}{12} < x < \frac{\pi}{12} \text{ puis} -\frac{5\pi}{6} < 2x < \frac{\pi}{6} \text{ et } -\frac{5\pi}{6} + \frac{\pi}{3} < 2x + \frac{\pi}{3} < \frac{\pi}{6} + \frac{\pi}{3} \text{ donc} \right]$$
$$-\frac{\pi}{2} < 2x + \frac{\pi}{3} < \frac{\pi}{2} \text{ et } \cos\left(2x + \frac{\pi}{3}\right) > 0;$$

Sur l'intervalle
$$\frac{\pi}{12}$$
; $\frac{7\pi}{12}$,

$$\frac{\pi}{12} < x < \frac{7\pi}{12}$$
 puis $\frac{\pi}{6} < 2x < \frac{7\pi}{6}$ et $\frac{\pi}{6} + \frac{\pi}{3} < 2x + \frac{\pi}{3} < \frac{7\pi}{6} + \frac{\pi}{3}$ donc

$$\frac{\pi}{2} < 2x + \frac{\pi}{3} < \frac{3\pi}{2} \text{ et } \cos\left(2x + \frac{\pi}{3}\right) < 0 ;$$

Sur l'intervalle
$$\left| \frac{7\pi}{12} ; \pi \right|$$
,

$$\frac{7\pi}{12} < x < \pi \text{ puis } \frac{7\pi}{6} < 2x < 2\pi \text{ et } \frac{7\pi}{6} + \frac{\pi}{3} < 2x + \frac{\pi}{3} < 2\pi + \frac{\pi}{3} \text{ donc}$$

$$\frac{3\pi}{2} < 2x + \frac{\pi}{3} < \frac{7\pi}{3}$$
 et $\cos\left(2x + \frac{\pi}{3}\right) > 0$.

On peut alors résumer ces résultats :

X	$-\pi$		11π		5π		π		7π		π
	$-\pi$		12		$-\overline{12}$		12		12		π
f(x)		+	0	-	0	+	0	-	0	+	

IV. Utiliser la parité et la périodicité des fonctions sinus et cosinus

Exercice 14

On considère la fonction f définie sur \angle par $f(x) = x \sin x$. Démontrer que f est paire.

Correction:

La fonction f est définie sur \angle par $f(x) = x \sin x$.

Pour tout réel x, $f(-x) = (-x)\sin(-x)$, or $\sin(-x) = -\sin x$, donc

 $f(-x) = -x(-\sin x) = x\sin x = f(x)$; la fonction f est donc paire.

Exercice 15

On considère la fonction f définie sur \angle par $f(x) = x + \sin x$. Démontrer que f est impaire.

Correction:

La fonction f est définie sur \angle par $f(x) = x + \sin x$.

Pour tout réel x, $f(-x) = -x + \sin(-x)$; or $\sin(-x) = -\sin x$, donc

 $f(-x) = -x - \sin(x) = -(x + \sin x) = -f(x)$; la fonction f est donc impaire.

Exercice 16

On considère la fonction f définie sur \angle par $f(x) = \sin 2x$. Démontrer que f est périodique de période π .

Correction:

La fonction f est définie sur \angle par $f(x) = \sin 2x$. Pour tout réel x, $f(x+\pi) = \sin(2(x+\pi)) = \sin(2x+2\pi)$; or $\sin(a+2\pi) = \sin a$, donc $f(x+\pi) = \sin(2x) = f(x)$; la fonction f est donc périodique de période π .

Exercice 17

On considère la fonction f définie sur \angle par $f(x) = \cos\left(\frac{x}{3} + \frac{\pi}{4}\right)$. Démontrer que f est périodique de période 6π .

Correction:

La fonction f est définie sur \angle par $f(x) = \cos\left(\frac{x}{3} + \frac{\pi}{4}\right)$.

Pour tout réel x, $f(x+6\pi) = \cos\left(\frac{x+6\pi}{3} + \frac{\pi}{4}\right) = \cos\left(\frac{x}{3} + \frac{6\pi}{3} + \frac{\pi}{4}\right) = \cos\left(\frac{x}{3} + \frac{\pi}{4} + 2\pi\right)$, or $\cos(a+2\pi) = \cos a$, donc $f(x+6\pi) = \cos\left(\frac{x}{3} + \frac{\pi}{4}\right) = f(x)$; la fonction f est donc périodique de période 6π .

V. Etudier des limites

Exercice 18

Etudier la limite en 0 de la fonction f définie sur $\angle x$ par $f(x) = \frac{3\sin x}{x}$.

Correction:

La fonction f est définie sur $\angle x$ par $f(x) = \frac{3\sin x}{x}$.

$$f(x) = 3 \times \frac{\sin x}{x}$$
, or on sait d'après le cours que $\lim_{x \to 0} \frac{\sin x}{x} = 1$, donc par produit : $\lim_{x \to 0} 3 \frac{\sin x}{x} = 3$

Exercice 19

Etudier la limite en 0 de la fonction f définie sur \angle^* par $f(x) = \frac{\cos x - 1}{2x}$.

Correction:

La fonction f est définie sur \angle^* par $f(x) = \frac{\cos x - 1}{2x}$.

$$f(x) = \frac{\cos x - 1}{2x} = \frac{1}{2} \times \frac{\cos x - 1}{x}$$
, or on sait d'après le cours que $\lim_{x \to 0} \frac{\cos x - 1}{x} = 0$, donc par produit :
$$\lim_{x \to 0} \frac{\cos x - 1}{2x} = 0$$
.

Exercice 20

Etudier la limite en $+\infty$ de la fonction f définie sur \angle par $f(x) = \sin x - x$.

Correction:

La fonction f est définie sur \angle par $f(x) = \sin x - x$.

On sait que, pour tout réel x, $-1 \le \sin x \le 1$, donc $-1 - x \le \sin x - x \le 1 - x$, puis $f(x) \le 1 - x$.

$$\lim_{x\to +\infty} (1-x) = -\infty$$
, donc d'après le théorème de comparaison, $\lim_{x\to +\infty} f(x) = -\infty$.

Exercice 21

Etudier la limite en $-\infty$ de la fonction f définie sur \angle par $f(x) = \cos 2x + x$.

Correction:

La fonction f est définie sur \angle par $f(x) = \cos 2x + x$.

On sait que, pour tout réel x, $-1 \le \cos(2x) \le 1$, donc $-1 + x \le \cos(2x) + x \le 1 + x$, puis $f(x) \le 1 + x$. $\lim_{x \to -\infty} (1+x) = -\infty$, donc d'après le théorème de comparaison, $\lim_{x \to -\infty} f(x) = -\infty$.

VI. Calculer des dérivées

Exercice 22

On considère la fonction définie sur \angle par $f(x) = x \sin x$. Calculer f'(x).

Correction:

La fonction est définie sur \angle par $f(x) = x \sin x$.

On remarque que
$$f = u \times v$$
 avec
$$\begin{cases} u(x) = x & ; u'(x) = 1 \\ v(x) = \sin x & ; v'(x) = \cos x \end{cases}$$
;

Pour tout réel x, $f'(x) = 1 \times \sin x + x \times \cos x = \sin x + x \cos x$.

Exercice 23

On considère la fonction définie sur $\angle *$ par $f(x) = \frac{\cos x}{x}$. Calculer f'(x).

Correction:

La fonction est définie sur $\angle *$ par $f(x) = \frac{\cos x}{x}$.

On remarque que
$$f = \frac{u}{v}$$
 avec
$$\begin{cases} u(x) = \cos x & ; u'(x) = -\sin x \\ v(x) = x & ; v'(x) = 1 \end{cases}$$
;

Pour tout réel
$$x$$
, $f'(x) = \frac{-(\sin x) \times x - \cos x}{x^2} = \frac{-x \sin x - \cos x}{x^2}$.

Exercice 24

On considère la fonction définie sur \angle par $f(x) = \sin(2x)$. Calculer f'(x).

Correction:

La fonction est définie sur \angle par $f(x) = \sin(2x)$.

On remarque que $f = \sin u$ avec u(x) = 2x; u'(x) = 2;

On sait que $(\sin u)' = u' \cos u$, donc pour tout réel x, $f'(x) = 2\cos(2x)$.

Exercice 25

On considère la fonction définie sur \angle par $f(x) = \cos\left(\frac{x}{2} + \frac{\pi}{3}\right)$. Calculer f'(x).

Correction:

La fonction est définie sur \angle par $f(x) = \cos\left(\frac{x}{2} + \frac{\pi}{3}\right)$.

On remarque que $f = \cos u$ avec $u(x) = \frac{x}{2} + \frac{\pi}{3}$; $u'(x) = \frac{1}{2}$;

On sait que $(\cos u)' = -u'\sin u$, donc pour tout réel x, $f'(x) = -\frac{1}{2}\sin\left(\frac{x}{2} + \frac{\pi}{3}\right)$.

VII. Etude d'une fonction

Exercice 26

Soit f la fonction dérivable sur $[0;\pi]$, définie par $f(x) = -\frac{1}{2}\cos(2x) + \cos(x) + \frac{3}{2}$.

Vérifier que $f'(x) = \sin(x)[2\cos(x) - 1]$ et en déduire le signe de f'(x) sur $[0; \pi]$.

Dresser le tableau de variation de f sur $[0;\pi]$

Correction:

La fonction est définie sur $[0;\pi]$, par $f(x) = -\frac{1}{2}\cos(2x) + \cos(x) + \frac{3}{2}$.

Elle est dérivable sur $[0;\pi]$ et pour tout x de $[0;\pi]$,

$$f'(x) = -\frac{1}{2}(-2\sin(2x)) - \sin(x)$$

$$= \sin(2x) - \sin(x)$$

$$= 2\sin(x)\cos(x) - \sin(x)$$

$$= \sin(x)[2\cos(x) - 1]$$

Sur $[0;\pi]$, $\sin(x)$ est positif et s'annule en 0 et en π ; f'(x) est donc du signe de $2\cos(x)-1$.

Sur
$$[0;\pi]$$
, $2\cos(x)-1=0 \Leftrightarrow \cos(x)=\frac{1}{2} \Leftrightarrow x=\frac{\pi}{3}$ et

$$2\cos(x)-1>0 \Leftrightarrow \cos(x)>\frac{1}{2} \Leftrightarrow 0 \leq x < \frac{\pi}{3}$$
.

On en déduit le tableau de variation de *f* :

x	0		$\frac{\pi}{3}$		π
f'(x)	0	+	0	-	0
f	2	0	$\sqrt{9}$		•

VIII. Pour aller plus loin....Etude de la fonction tangente

Exercice 27

1. Définition

La fonction tangente, notée tan, est la fonction définie pour tout réel x différent de $-\frac{\pi}{2} + k\pi$, avec $\sin x$

$$k$$
 entier, par $\tan x = \frac{\sin x}{\cos x}$.

Valeurs particulières à connaître :

Compléter le tableau suivant

Х	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	π
tan <i>x</i>					

2. Propriétés

- a. Montrer que, pour tout réel x différent de $-\frac{\pi}{2} + k\pi$, avec k entier, $\tan(x+\pi) = \tan x$. La fonction tangente est donc périodique de période π .
- **b.** Montrer que, pour tout réel x différent de $-\frac{\pi}{2}+k\pi$, avec k entier, $\tan(-\pi)=\tan x$. La fonction tangente est donc impaire.

On peut alors réduire l'intervalle d'étude de la fonction tangente à l'intervalle $\left[0;\frac{\pi}{2}\right]$.

3. Etude de la fonction tangente

a. Montrer que : $\lim_{\substack{x \to \frac{\pi}{2} \\ x < \frac{\pi}{-}}} \tan x = +\infty$.

La droite d'équation $x = \frac{\pi}{2}$ est donc asymptote à la courbe représentant la fonction tangente.

b. La fonction tangente est dérivable sur $\left[0;\frac{\pi}{2}\right[$ (quotient de deux fonctions dérivables sur $\left[0;\frac{\pi}{2}\right[$, le dénominateur ne s'annulant pas sur $\left[0;\frac{\pi}{2}\right[$).

Montrer que, pour tout x de $\left[0; \frac{\pi}{2}\right]$, $\tan'(x) = \frac{1}{\cos^2 x} = 1 + \tan^2 x$.

En déduire le sens de variation de la fonction tangente sur $\left[0;\frac{\pi}{2}\right]$.

c. Tracer la courbe représentative de la fonction tangente sur $\left[-2\pi \; ; \; 2\pi \; \right]$.

Correction:

1.

Х	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	π
tanx	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	0

2. a. Soit x un réel différent de $-\frac{\pi}{2} + k\pi$, avec k entier,

$$\tan(x+\pi) = \frac{\sin(x+\pi)}{\cos(x+\pi)} = \frac{-\sin x}{-\cos x} = \tan x.$$

b. Soit
$$x$$
 un réel différent de $-\frac{\pi}{2} + k\pi$, avec k entier,

$$\tan(-x) = \frac{\sin(-x)}{\cos(-x)} = \frac{-\sin x}{\cos x} = -\tan x$$

3. a.
$$\limsup_{x \to \frac{\pi}{2}} x = 1$$
 et $\limsup_{x \to \frac{\pi}{2}} \cos x = 0$ avec $\cos x > 0$, lorsque $x \in \left[0; \frac{\pi}{2}\right]$. Donc: $\lim \tan x = +\infty$.

$$\lim_{\substack{x \to \frac{\pi}{2} \\ x < \frac{\pi}{2}}} \tan x = +\infty.$$

La droite d'équation $x = \frac{\pi}{2}$ est donc asymptote à la courbe représentant la fonction tangente.

b.La fonction tangente est dérivable sur $\left[0;\frac{\pi}{2}\right]$ (quotient de deux fonctions dérivables sur

$$\left[\ 0\ ; rac{\pi}{2}
ight[$$
 , le dénominateur ne s'annulant pas sur $\left[\ 0\ ; rac{\pi}{2}
ight[$).

Et pour tout
$$x$$
 de $\left[0; \frac{\pi}{2}\right[$, $\tan'(x) = \frac{\cos x \times \cos x - \sin x \times (-\sin x)}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$

et
$$\tan'(x) = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{\cos^2 x}{\cos^2 x} + \frac{\sin^2 x}{\cos^2 x} = 1 + \tan^2 x$$
.

Pour tout x de $\left[0; \frac{\pi}{2}\right]$, tan'(x) > 0. La fonction tangente est strictement croissante sur

$$\left[0;\frac{\pi}{2}\right].$$

Courbe

