Exercice 2:

1. Résoudre dans \mathbb{R}^2 les systèmes suivants (avec la méthode des déterminants):

$$\begin{cases} x + 2y = -5 \\ 3x - y = 13 \end{cases} = \begin{cases} x + \frac{1}{2}y = -5 \\ 2x + y = 3 \end{cases} \text{ et } \begin{cases} -6x - 3y = 3 \\ 2x + y = -1 \end{cases}$$

2. Résoudre, suivant les valeurs du paramètre m, le système : $\begin{cases} mx - 3y = 9 \\ 2x + y = -3 \end{cases}$

Exercice 1 :

1. Résoudre dans \mathbb{R}^2 le système : $\begin{cases} 2x + 3y = 11 \\ 5x - 2y = -1 \end{cases}$

2. Déduire dans \mathbb{R}^2 les solutions du système : $\begin{cases} 2\sqrt{x} + 3y^2 = 11 \\ 5\sqrt{x} - 2y^2 = -1 \end{cases}$

Exercice3:

1. Résoudre dans \mathbb{R}^2 le système : $\begin{cases} 4x + y = 6 \\ 2x - 3y = -4 \end{cases}$

2. Déduire dans \mathbb{R}^2 les solutions des deux systèmes : $\begin{cases} \frac{4}{x} + \frac{1}{y} = 6 \\ \frac{2}{x} - \frac{3}{y} = -4 \end{cases}$ et $\begin{cases} 4x^3 + |y| = 6 \\ 2x^3 - 3|y| = -4 \end{cases}$

Exercice 4:

1. Déterminer deux nombres dont la somme vaut 60 et le produit 851.

2. Résoudre dans \mathbb{R}^2 les deux systèmes : $\begin{cases} x+y=7 \\ xy=12 \end{cases}$ et $\begin{cases} x+y=4 \\ xy=12 \end{cases}$

Exercice 5:

1. Résoudre dans \mathbb{R}^2 le système : $\begin{cases} x + y = 8 \\ xy = 15 \end{cases}$

2. Déduire dans \mathbb{R}^2 les solutions du système : $\begin{cases} 2x + \sqrt{y-1} = 8 \\ 2x \sqrt{y-1} = 15 \end{cases}$

prof: atmani najib

Exercice 1:

Résoudre en utilisant la forme canonique les deux équations suivantes :

$$4x^2 + 3x - 1 = 0$$
 et $-2x^2 + 5x - 3 = 0$

Exercice 2:

1. Résoudre dans \mathbb{R} les équations suivantes :

2. a) Résoudre dans \mathbb{R} l'équation : $x^2 - 5x + 4 = 0$

b) Déduire les solutions des deux équations suivantes : $x^4 - 5x^2 + 4 = 0$ et $x - 5\sqrt{x} + 4 = 0$

3. a) Résoudre dans \mathbb{R} l'équation : $x^2 - 2x - 8 = 0$

b) Déduire les solutions des deux équations suivantes : $x^2 - 2|x| - 8 = 0$ et $x^4 - 2x^2 - 8 = 0$

4. Résoudre l'équation : $2x - 7\sqrt{x} - 4 = 0$

Exercice3:

1. Résoudre dans \mathbb{R} , suivant les valeurs du paramètre m , chacune des deux équations :

$$mx - 3 - x = 0$$
 et $mx + m - 1 = 2x$

2. Résoudre dans \mathbb{R} , suivant les valeurs de m, les deux équations :

$$mx^{2} - (3+m^{2})x + 3m = 0$$
 et $mx^{2} + (2m-1)x - 2 = 0$

Exercice 4:

On considère l'équation : $2x^2 + \sqrt{3}x - 1 = 0$

1. Sans calculer le discriminant, montrer que cette équation a deux solutions distinctes x_1 et x_2 .

2. a) Calculer $x_1 + x_2$ et $x_1 \times x_2$ sans calculer x_1 et x_2 .

b) Déduire la valeur de $x_1^2 + x_2^2$ et de $\frac{1}{x_1} + \frac{1}{x_2}$

Exercice 5:

On considère le polynôme : $P(x) = -2x^3 + 3x^2 + 11x - 6$

1. Trouver le polynôme Q(x) tel que : P(x) = (x-3)Q(x)

2. Résoudre dans \mathbb{R} l'équation : $-2x^2 - 3x + 2 = 0$

3. Résoudre dans \mathbb{R} l'équation : P(x) = 0

4. Déduire les solutions de l'équation : $-2|x|^3 + 3x^2 + 11|x| - 6 = 0$

prof: atmani najib

Exercice 1:

Résoudre dans \mathbb{R} les inéquations suivantes :

$$5x^2 - 2x - 7 \le 0$$
; $-2x^2 + 5x + 3 > 0$; $-3x^2 + 7x - 5 < 0$

Exercice2:

- 1. Résoudre dans \mathbb{R} l'équation : $2x^2 5x + 3 = 0$
- 2. Résoudre dans \mathbb{R} l'inéquation : $2x^2 5x + 3 < 0$
- 3. Déduire dans \mathbb{R} les solutions de l'inéquation : $2(2x-1)^2 5(2x-1) + 3 < 0$

Exercice3:

1. Résoudre dans \mathbb{R} les équations : $x^2 - 5x + 4 = 0$; $x^2 - 4x + 3 = 0$

$$x^2 - x - 2 = 0$$
 ; $x^2 - 5x + 6 = 0$

2. Résoudre dans \mathbb{R} les inéquations :

$$(x^2-5x+4)(x^2-4x+3)<0$$
 ; $\frac{x^2-x-2}{x^2-5x+6}\ge 0$; $\frac{x^2-4x+3}{x^2-4}>0$

Exercice 4:

On considère le polynôme : $P(x) = 6x^3 - 13x^2 + 4$

- 1. Montrer que 2 est une racine de P(x)
- 2. Résoudre dans \mathbb{R} l'équation P(x) = 0 puis l'inéquation : $P(x) \le 0$
- 3. Résoudre dans \mathbb{R} l'inéquation : $P(x) \le 3x^2(x-2)$

Exercice 5:

On considère le polynôme : $P(x) = x^4 + 6x^3 + 11x^2 + 6x$

- 1. Montrer que P(x) est divisible par (x + 1)
- 2. Ecrire P(x) sous forme d'un produit de deux polynômes du premier degré et d'un polynôme de second degré
- 3. Résoudre l'équation : $x^2 + 5x + 6 = 0$
- 4. Résoudre les deux inéquations :

$$P(x) \le 0$$
 $P(x) \le x(x^2 + 5x + 6)$