FONCTIONS - Généralités

Exercice1: Soit la fonction f définie par , $f(x) = 3x^2 - 1$

- 1)Calculer l'image de 1 et $\sqrt{2}$ et -1 par f.
- 2)Déterminer les antécédents éventuels de 2 par f,

Solution: 1) $f(1) = 3 \times 1^2 - 1 = 3 - 1 = 2$

$$f(\sqrt{2}) = 3 \times (\sqrt{2})^2 - 1 = 6 - 1 = 4$$

$$f(-1) = 3 \times (-1)^2 - 1 = 3 - 1 = 2$$

2)
$$f(x) = 2$$
 ssi $3 \times x^2 - 1 = 2$

ssi
$$3 \times x^2 = 2 + 1$$
 ssi $3 \times x^2 = 3$ ssi $x^2 = 1$

ssi
$$x = -1$$
 ou $x = 1$

donc les antécédents éventuels de 2 par f sont -1 et 1

Exercice2:

a. On considère la fonction définie par : $x \mapsto \frac{1}{x-3}$

Parmi les valeurs suivantes, laquelle/lesquelles n'a/ont pas d'image par f? 0; 2; -3; 3.

- **b.** On considère la fonction définie par : $x \mapsto \sqrt{x-3}$ Parmi les valeurs suivantes, laquelle/lesquelles n'a/ont pas³) $f(x) = \frac{2x^4}{x^2 - 4}$. d'image par g? 0; 2; -3; 4.
- c. On considère la fonction définie par : $x \mapsto \frac{1}{\sqrt{7-x}}$

Parmi les valeurs suivantes, laquelle/lesquelles n'a/ont pas d'image par h? 5; -6; 9; 7.

Exercice3: Déterminer l'ensemble de définition des fonctions suivantes définie par :

1)
$$f(x) = 3x^2 - x + 1$$

1)
$$f(x) = 3x^2 - x + 1$$
. 2) $f(x) = \frac{x^3}{2x - 4}$.

$$f(x) = \frac{2x^4}{x^2 - 4}.$$

4)
$$f(x) = \frac{7x-1}{x^3-2x}$$

$$5) \quad f(x) = \sqrt{-3x + 6}$$

5)
$$f(x) = \sqrt{-3x+6}$$
. 6) $f(x) = \frac{x-5}{2x^2-5x-3}$.

7)
$$f(x) = \sqrt{x^2 - 3x + 2}$$
.

8)
$$f(x) = \sqrt{\frac{-3x+9}{x+1}}$$
.

9)
$$f(x) = \frac{x+1}{\sqrt{-2x^2 + x + 3}}$$
. 10) $f(x) = \frac{|x-5|}{x^2 + 1}$.

10)
$$f(x) = \frac{|x-5|}{x^2+1}$$
.

11)
$$f(x) = \frac{\sqrt{|x|}}{x}.$$

$$12) \quad f(x) = \frac{\sqrt{x+2}}{x-1} \, .$$

13)
$$f(x) = \sqrt{-2x^2 + x + 3}$$
. 14) $f(x) = \frac{|x - 5|}{x^2 + 1}$.

14)
$$f(x) = \frac{|x-5|}{x^2+1}$$

15)
$$f(x) = \frac{\sqrt{|x|}}{x}$$
.

$$16) \quad f\left(x\right) = \frac{\sqrt{x-2}}{2x+4}$$

17)
$$f(x) = 3x^2 - \frac{1}{x} + \sqrt{-x}$$
. 18) $f(x) = \frac{x}{|2x - 4| - |x - 1|}$

19)
$$f(x) = \frac{2\sin x}{2\cos x}$$
.

19)
$$f(x) = \frac{2\sin x}{2\cos x - 1}$$
. 20) $f(x) = \sqrt{\frac{-2x^2 + 2x + 13}{x^2 - x - 6}}$

21)
$$f(x) = \sqrt{x^2 + (2\sqrt{3} - \sqrt{2})x - 2\sqrt{6}}$$
.

Solutions

- 1) $f(x) = 3x^2 x + 1$ f est une fonction polynôme donc Un réel a toujours une image. Donc $D_{_f}=\mathbb{R}$
- 2) $f(x) = \frac{x^3}{2x^4}$. Pour les fonctions du type fractions

rationnelles, l'ensemble de définition est l'ensemble des nombres pour lesquels le dénominateur est non nul.

$$D_f = \left\{ x \in \mathbb{R} / 2x - 4 \neq 0 \right\}$$

$$2x-4=0$$
 ssi $x=\frac{4}{2}=2$ Donc $D_f=\mathbb{R}-\{2\}$

On dira aussi que 2est une valeur interdite pour la fonction f

$$f(x) = \frac{2x^4}{x^2 - 4}$$

$$D_f = \left\{ x \in \mathbb{R} / x^2 - 4 \neq 0 \right\}$$

$$x^2 - 4 = 0$$
 SSi $x^2 - 2^2 = 0$ SSi $(x-2)(x+2) = 0$

ssi
$$x-2=0$$
 ou $x+2=0$ ssi $x=2$ ou $x=-2$

$$donc D_f = \mathbb{R} - \{-2, 2\}$$

$$\begin{cases} 4) & f(x) = \frac{7x - 1}{x^3 - 2x} . \quad D_f = \left\{ x \in \mathbb{R} / x^3 - 2x \neq 0 \right\} \end{cases}$$

3)
$$x^3 - 2x = 0$$
 ssi $x(x^2 - 2) = 0$ ssi $x = 0$ ou $x^2 - 2 = 0$ ssi

$$x = 0$$
 ou $x^2 = 2$ ssi $x = 0$ ou $x = \sqrt{2}$ ou $x = -\sqrt{2}$

donc
$$D_f = \mathbb{R} - \left\{ -\sqrt{2}; 0; \sqrt{2} \right\}$$

$$5) \quad f(x) = \sqrt{-3x+6} \ .$$

Pour les fonctions du type racine carrée, l'ensemble de définition est l'ensemble des nombres pour lesquels l'intérieur de la racine est

positif:
$$D_f = \{x \in \mathbb{R} / -3x + 6 \ge 0\}$$

$$-3x+6 \ge 0$$
 ssi $x \le 2$ ssi $x \le \frac{-6}{-3}$ ssi $-3x \ge -6$

Donc
$$D_f =]-\infty; 2]$$

6)
$$f(x) = \frac{x-5}{2x^2-5x-3}$$
. $D_f = \{x \in \mathbb{R} / 2x^2 - 5x - 3 \neq 0\}$

$$2x^2-5x-3=0$$
 $a=2$ et $b=-5$ et $c=-3$

$$\Delta = b^2 - 4ac = (-5)^2 - 4 \times 2 \times (-3) = 25 + 24 = 49 = (7)^2 > 0$$

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

$$x_1 = \frac{-(-5) + \sqrt{49}}{2 \times 2} = \frac{7+5}{4} = \frac{12}{4} = 3 \text{ et } x_2 = \frac{(-5) - \sqrt{49}}{2 \times 2} = \frac{5-7}{4} = \frac{-2}{4} = -\frac{1}{2}$$
 | 11) $f(x) = \frac{\sqrt{|x|}}{x}$.

Donc
$$D_f = \mathbb{R} - \left\{ -\frac{1}{2}; 3 \right\}$$

7)
$$f(x) = \sqrt{2x^2 - 3x + 1}$$
.

$$D_f = \left\{ x \in \mathbb{R} / 2x^2 - 3x + 1 \ge 0 \right\}$$
 soit Δ son discriminant

$$\Delta = b^2 - 4ac = (-3)^2 - 4 \times 2 \times 1 = 9 - 8 = 1 > 0$$

$$-(-3)-\sqrt{1}$$
 2

$$x_1 = \frac{-(-3) + \sqrt{1}}{2 \times 2} = \frac{4}{4} = 1$$
 et $x_2 = \frac{-(-3) - \sqrt{1}}{2 \times 2} = \frac{2}{4} = \frac{1}{2}$

Donc
$$D_f = \left[-\infty, \frac{1}{2} \right] \cup \left[1, +\infty \right[$$

8)
$$f(x) = \sqrt{\frac{-9x+3}{x+1}}$$
. $D_f = \left\{ x \in \mathbb{R} / \frac{-9x+3}{x+1} \ge 0etx + 1 \ne 0 \right\}$

$$-9x+3=0$$
 ssi $x = \frac{1}{3}$ ssi $-9x = -3$

$$x+1=0$$
 ssi $x=-1$

x	$-\infty$	-1		$\frac{1}{3}$	$+\infty$
-9x + 3	+		+	þ	_
x+1	_	þ	+		+
$\frac{-9x+3}{x+1}$	_		+	þ	_

Donc
$$D_f = \left[-1, \frac{1}{3} \right]$$

9)
$$f(x) = \frac{x+1}{\sqrt{-2x^2+x+3}}$$

$$D_f = \left\{ x \in \mathbb{R} / -2x^2 + x + 3 > 0 \right\}$$

$$-2x^2 + x + 3 = 0$$
 $a = -2$ et $b = 1$ et $c = 3$

$$\Delta = b^2 - 4ac = (1)^2 - 4 \times (-2) \times 3 = 1 + 24 = 25 = (5)^2 > 0$$

Donc on a deux racines

$$x_1 = \frac{-1+5}{2 \times (-2)} = \frac{4}{-4} = -1$$
 et $x_2 = \frac{-1-5}{2 \times (-2)} = \frac{-6}{-4} = \frac{3}{2}$

x	$-\infty$	-1		3/2	$+\infty$
$-2x^2+x+3$	_	þ	+	þ	_

Donc
$$D_f = \left[-1, \frac{3}{2} \right]$$

10)
$$f(x) = \frac{|x-5|}{x^2+1}$$
. $D_f = \{x \in \mathbb{R} / x^2 + 1 \neq 0\}$

$$x^2 + 1 = 0$$
 ssi $x^2 = -1$

Cette équation n'admet pas de solution dans \mathbb{R}

Donc
$$D_f = \mathbb{R}$$

11)
$$f(x) = \frac{\sqrt{|x|}}{x}$$

$$|f(x) \in \mathbb{R} \text{ ssi } \sqrt{|x|} \in \mathbb{R} \text{ et } x \neq 0$$

Or on sait que $|x| \ge 0$ pour tout $x \in \mathbb{R}$

Donc $f(x) \in \mathbb{R}$ ssi $x \neq 0$ Donc $D_f = \mathbb{R} - \{0\} = \mathbb{R}^*$

16)
$$f(x) = \frac{\sqrt{x+2}}{x-1}$$
. $D_f = \{x \in \mathbb{R} \mid x+2 \ge 0etx - 1 \ne 0\}$

$$D_{f} = \{ x \in \mathbb{R} / x \ge -2etx \ne 1 \}$$

$$D_f = [-2, 1] \cup]1, +\infty[$$

17)
$$f(x) = 3x^2 - \frac{1}{x} + \sqrt{-x}$$

$$D_f = \{ x \in \mathbb{R} / -x \ge 0 etx \ne 0 \}$$

$$D_f = \{x \in \mathbb{R} \mid x \le 0etx \ne 0\} \text{ donc } : D_f =]-\infty, 0[$$

18)
$$f(x) = \frac{x}{|2x-4|-|x-1|}$$
.

$$D_f = \{ x \in \mathbb{R} / |2x - 4| - |x - 1| \neq 0 \}$$

$$|2x-4|-|x-1|=0$$
 ssi $|2x-4|=|x-1|$

ssi
$$2x-4=x-1$$
 ou $2x-4=-(x-1)$

ssi
$$2x-x=4-1$$
 ou $2x-4=-x+1$

ssi
$$x = 3$$
 ou $2x + x = 4 + 1$

ssi
$$x = 3$$
 ou $3x = 5$ ssi $x = 3$ ou $x = \frac{5}{3}$

Donc
$$D_f = \mathbb{R} - \left\{ \frac{5}{3}; 3 \right\}$$

19)
$$f(x) = \frac{2\sin x}{2\cos x - 1}$$
. $D_f = \{x \in \mathbb{R} / 2\cos x - 1 \neq 0\}$

$$2\cos x - 1 = 0 \text{ ssi } \cos x = \frac{1}{2}$$

$$\cos x = \frac{1}{2} \operatorname{ssi} \cos x = \cos\left(\frac{\pi}{3}\right)$$

$$x = \frac{\pi}{3} + 2k\pi$$
 ou $x = -\frac{\pi}{3} + 2k\pi$ où $k \in \mathbb{Z}$

Donc:
$$D_f = \mathbb{R} - \left\{ -\frac{\pi}{3} + 2k\pi; \frac{\pi}{3} + 2k\pi / k \in \mathbb{Z} \right\}$$

20)
$$f(x) = \sqrt{\frac{-2x^2 + 2x + 13}{x^2 - x - 6}}$$

$$D_f = \left\{ x \in \mathbb{R} / \frac{-2x^2 + 2x + 13}{x^2 - x - 6} \ge 0 e t x^2 - x - 6 \ne 0 \right\}$$

On détermine les racines du trinôme $-2x^2 + 2x + 13$: Le discriminant est $\Delta' = 2^2 - 4 \times (-2) \times 13 = 108$ et ses

$$x_1 = \frac{-2 - \sqrt{108}}{2 \times (-2)} = \frac{1 + 3\sqrt{3}}{2}$$
 et $x_2 = \frac{-2 + \sqrt{108}}{2 \times (-2)} = \frac{1 - 3\sqrt{3}}{2}$

On détermine les racines du trinôme $x^2 - x - 6$:

Le discriminant est $\Delta = (-1)^2 - 4 \times (-6) \times 1 = 25$ et ses racines sont :

$$x_1' = \frac{-(-1) - \sqrt{25}}{2 \times 1} = \frac{1 - 5}{2} = -2$$
 et $x_2' = \frac{-(-1) + \sqrt{25}}{2 \times 1} = \frac{1 + 5}{2} = 3$

- On obtient le tableau de signe :

х	-∞	$\frac{1-3\sqrt{3}}{2}$		-2		3	1-	$\frac{3\sqrt{3}}{2}$	+	00
$-2x^2+2x+13$	-	ф	+		+		+	Φ	-	
$x^2 - x - 6$	+		+	φ	-	Φ	+		+	
$\frac{-2x^2 + 2x + 13}{x^2 - x - 6}$	-	φ	+		-		+	0	-	

21)
$$f(x) = \sqrt{x^2 + (2\sqrt{3} - \sqrt{2})x - 2\sqrt{6}}$$

$$D_f = \left\{ x \in \mathbb{R} / x^2 + \left(2\sqrt{3} - \sqrt{2}\right)x - 2\sqrt{6} \ge 0 \right\}$$

$$\Delta = b^2 - 4ac = (2\sqrt{3} + \sqrt{2})^2 - 4 \times 1 \times 2\sqrt{6}$$

$$\Delta = 12 - 4\sqrt{6} + 2 + 8\sqrt{6} = 14 + 4\sqrt{6}$$

$$14 + 4\sqrt{6} = 14 + 2 \times 2\sqrt{3} \times \sqrt{2} = (2\sqrt{3})^{2} + 2 \times 2\sqrt{3} \times \sqrt{2} + (\sqrt{2})^{2}$$

$$14 + 4\sqrt{6} = \left(2\sqrt{3} + \sqrt{2}\right)^2$$

On a $\Delta = 14 + 4\sqrt{6} > 0$ donc

$$x_1 = \frac{-2\sqrt{3} + \sqrt{2} + \sqrt{14 + 4\sqrt{6}}}{2 \times 1} = \frac{-2\sqrt{3} + \sqrt{2} + \left|2\sqrt{3} + \sqrt{2}\right|}{2 \times 1}$$

et
$$x_2 = \frac{-2\sqrt{3} + \sqrt{2} - \left| 2\sqrt{3} + \sqrt{2} \right|}{2 \times 1}$$

$$x_1 = \frac{-2\sqrt{3} + \sqrt{2} + 2\sqrt{3} + \sqrt{2}}{2 \times 1} = \frac{2\sqrt{2}}{2} = \sqrt{2}$$
 et

$$x_2 = \frac{-2\sqrt{3} + \sqrt{2} - 2\sqrt{3} - \sqrt{2}}{2 \times 1} = \frac{-4\sqrt{3}}{2} = -2\sqrt{3}$$

On a donc: $D_f = \left] -\infty; -2\sqrt{3} \right] \cup \left[\sqrt{2}; +\infty \right[$

Exercice4: Soient les deux fonctions :

$$f(x) = \frac{3x^2 + 1}{\sqrt{x^2}}$$
 et $g(x) = \frac{1 + 3x^2}{|x|}$

Est-ce que : f=g. ? justifier

Solution:

- on a
$$f(x) \in \mathbb{R}$$
 ssi $\sqrt{x^2} \in \mathbb{R}$ et $x \neq 0$

or on sait que $x^2 \ge 0$ donc $\sqrt{x^2} \in \mathbb{R}$ pour tout $x \in \mathbb{R}$ alors $f(x) \in \mathbb{R}$ ssi $x \ne 0$ donc $D_f = \mathbb{R}^*$

on a
$$g(x) \in \mathbb{R}$$
 ssi $|x| \neq 0$ ssi $x \neq 0$
donc $D_g = \mathbb{R}^*$

alors
$$D_f = D_{\varrho} = \mathbb{R}^*$$

on sait que
$$\sqrt{x^2} = |x|$$
 et $3x^2 + 1 = 1 + 3x^2$ donc $f(x) = g(x)$

donc finalement on a trouvé que : $D_f = D_g = \mathbb{R}^*$ et f(x) = g(x) donc : f = g.

Exercice5: Soient les deux fonctions :

$$h(x) = \frac{x^2 - x}{x}$$
 et $t(x) = x - 1$

Est-ce que : f=g. ? justifier

Solution:

- on a $h(x) \in \mathbb{R}$ ssi $x \neq 0$ donc $D_h = \mathbb{R}^*$
- on a t(x) est un polynôme donc $D_t = \mathbb{R}$

alors $D_h \neq D_t$ donc: $h \neq t$

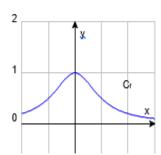
Exercice6: Tracer la représentation graphique de la fonction

$$f$$
 tq: $f(x) = \frac{1}{x^2 + 1}$ Sur I un l'intervalle $I = [-2;3]$

Réponses

Pour tracer la courbe représentative de la fonction On calcule des images en nombre suffisant, et on présente les résultats dans un tableau de valeurs.

X	-2	-1	0	1	2	3
f(X)	0,2	0,5	1	0,5	0,2	0,1



Exercice7: que représente la courbe représentative d'une fonction affine f(x) = ax + b avec $a \in \mathbb{R}$ et $b \in \mathbb{R}$)

Solution : la courbe représentative d'une fonction affine f est une droite d'équation y = ax + b

Exercice8: Tracer la représentation graphique de la fonction f tq: f(x) = |2x + 3|

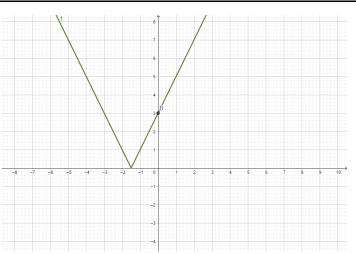
Solution: on a $f(x) \in \mathbb{R}$ donc $D_f = \mathbb{R}$

x	=	$\frac{\cdot 3}{2} + \infty$
2x+3	- 0	+
2x+3	-2x-3	2x+3

$$2x+3=0$$
 ssi $x=\frac{-3}{2}$

Donc
$$f(x) = 2x + 3$$
 si $x \in \left[-\frac{3}{2}, +\infty \right[$

$$f(x) = -2x - 3 \text{ si } x \in \left[-\infty, -\frac{3}{2} \right]$$



Exercice9: Tracer la représentation graphique de la fonction f tq: f(x) = |x-2| + |x+2|

Solution:

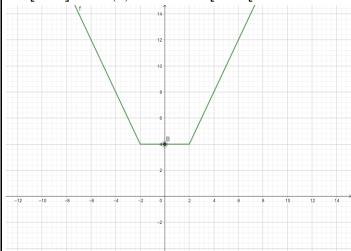
- on a
$$f(x) \in \mathbb{R}$$
 donc $D_f = \mathbb{R}$

$$x+2=0 \text{ ssi } x=-2$$

$$x-2=0$$
 ssi $x=2$

x	$-\infty$ –	-2 2	$2 + \infty$
x-2	_	- () +
x-2	-x+2	-x+2	x-2
x+2	- () +	+
x+2	-x-2	x+2	x+2
x-2 + x+2	-2x	4	2x

Donc f(x) = -2x si $x \in]-\infty, -2]$ et f(x) = 4 si $x \in [-2, 2]$ et f(x) = 2x si $x \in [2, +\infty[$

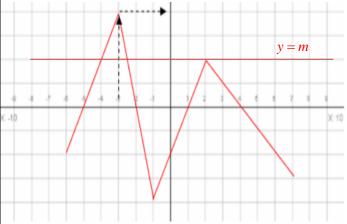


Exercice10: La courbe ci-dessous représente la fonction f définie sur [-6;7]

Répondre par lecture graphique :

- 1- Quelles sont les images des réels -5, -3, 0 et 6?
- 2- Quels sont les antécédents de -1 et 0 ?
- 3- Résoudre graphiquement f(x) = 0
- 4- Quel est, en fonction de m , le nombre de solutions de f(x) = m

- 5- Résoudre graphiquement f(x) < 0
- 6- Résoudre graphiquement $f(x) \ge 2$



Solution:

1) Image de -5 est 0 (ordonnée du point d'abscisse -5) Image de -3 est 4

Image de 0 est -2 Image de 6 est -2

2) Antécédents de -1 sont : -5,5 -1,75 0,5 et 5

Antécédents de 0 sont : -5 -2 1 et 4

3) La solution est l'ensemble des antécédents de 0 :

$$S = \{-5, -2, 1, 4\}$$

4) Nombre de solutions de f(x) = m C'est le nombre de points d'intersection de courbe avec une la droite parallèle à l'axes des abscisses et d'ordonnées m.

Si m < -4: pas de solution

Si m = -4: une solution

Si: -4 < m < -3 deux solutions

Si -3 < m < -2: trois solutions

Si -2 < m < 2: quatre solutions

Si m=2: trois solutions

Si: 2 < m < 4 deux solutions

Sim = 4: une solution

Si m > 4: pas de solution

5) f(x) < 0 Cela correspond aux valeurs de x pour lesquelles

 C_f est au-dessous de l'axe des abscisses.

$$S = [-6;7] \cup]-2;1[\cup]4;7]$$

6) $f(x) \ge 2$ Cela correspond aux valeurs de x pour

lesquelles C_f est au-dessus de la droite d'équation y = 2

donc
$$S = [-4; 2.5] \cup \{2\}$$

Exercice11: étudier la parité des fonctions suivantes

1)
$$f(x) = 3x^2 - 5$$
 2) $g(x) = \frac{3}{x}$ 3) $h(x) = 2x^3 + x^2$

$$4) t(x) = \frac{x}{x-2}$$

Solution :1) f est une fonction polynôme donc Un réel a toujours une image. Donc $D_f = \mathbb{R}$

- Pour tout réel x, si $x \in \mathbb{R}$, alors $-x \in \mathbb{R}$

$$- f(-x) = 3(-x)^{2} - 5 = 3x^{2} - 5$$
$$f(-x) = f(x)$$

Donc f est une fonction paire,

2) Soit g une fonction tq : $g(x) = \frac{3}{x}$

on a $g(x) \in \mathbb{R}$ ssi $x \neq 0$ donc $D_g = \mathbb{R}^*$

- Pour tout réel x, si $x \in \mathbb{R}^*$, alors $-x \in \mathbb{R}^*$

$$g(-x) = \frac{3}{-x} = -\frac{3}{x}$$
$$g(-x) = -g(x)$$

Donc g est une fonction impaire,

3) Soit h une fonction tq: $h(x) = 2x^3 + x^2$

h est une fonction polynôme donc Un réel a toujours une image. Donc $D_h = \mathbb{R}$

Pour tout réel x, si $x \in \mathbb{R}$, alors $-x \in \mathbb{R}$

$$h(-x) = 2(-x)^3 + (-x)^2 = -2x^3 + x^2$$
$$h(-x) = -(2x^3 - x^2) \neq -h(x)$$

Donc h est une fonction ni paire ni impaire,

4) Soit tune fonction tq:
$$t(x) = \frac{x}{x-2}$$

on a $t(x) \in \mathbb{R}$ ssi $x-2 \neq 0$ ssi $x \neq 2$

Donc
$$D_t = \mathbb{R} - \{2\}$$

on a
$$-2 \in D_t$$
 mais $-(-2) = 2 \notin D_t$

Donc D_t n'est pas symétrique par rapport a O

Donc h est une fonction ni paire ni impaire,

Exercice12: Etudier la parité des fonctions suivantes définie

par:1)
$$f(x) = \frac{x^2 - 1}{x}$$
. 2) $f(x) = x^2 + \frac{1}{x}$.

3)
$$f(x) = \frac{|x|}{x^2 - 1}$$
 4) $f(x) = \sqrt{1 - x^2}$ 5) $f(x) = \frac{2x^3}{x^2 + 5}$. 5) $f(x) = \frac{2x^3}{x^2 + 5}$

6)
$$f(x) = |x| - \sqrt{2x^2 + 4}$$
. 7) $f(x) = \frac{\sqrt{x}}{2}$.

Solutions

1)
$$f(x) = \frac{x^2 - 1}{x}$$
 on a $f(x) \in \mathbb{R}$ ssi $x \neq 0$
done $D_f = \mathbb{R}^*$

Pour tout réel x, si $x \in \mathbb{R}^*$, alors $-x \in \mathbb{R}^*$

$$f(-x) = \frac{(-x)^2 - 1}{-x} = -\frac{x^2 - 1}{x}$$

$$f(-x) = -f(x)$$

Donc f est une fonction impaire,

2)
$$f(x) = x^2 + \frac{1}{x}$$
 on a $f(x) \in \mathbb{R}$ ssi $x \neq 0$

donc
$$D_f = \mathbb{R}^*$$

- Pour tout réel x, si $x \in \mathbb{R}^*$, alors $-x \in \mathbb{R}^*$

$$f(-x) = (-x)^2 + \frac{1}{-x} = x^2 - \frac{1}{x} = \left(-x^2 + \frac{1}{x}\right)$$

$$f(-x) \neq -f(x)$$

Donc f est une fonction ni paire ni impaire,

3)
$$f(x) = \frac{|x|}{x^2 - 1}$$
 on a $f(x) \in \mathbb{R}$ ssi $x^2 - 1 \neq 0$

$$x^2 - 1 = 0$$
 ssi $x^2 = 1$ ssi $x = 1$ ou $x = -1$

$$donc D_f = \mathbb{R} - \{-1, 1\}$$

Pour tout réel x, si $x \in \mathbb{R} - \{-1, 1\}$, alors

$$-x \in \mathbb{R} - \{-1, 1\}$$

$$f(-x) = \frac{|-x|}{(-x)^2 - 1} = \frac{|x|}{x^2 - 1}$$
$$f(-x) = f(x)$$

Donc f est une fonction paire

4)
$$f(x) = \sqrt{1-x^2}$$
.

$$D_f = \left\{ x \in \mathbb{R} / 1 - x^2 \ge 0 \right\}$$

$$1-x^2 = 0$$
 ssi $x^2 = 1$ ssi $x = 1$ ou $x = -1$

Donc
$$D_f = [-1,1]$$

• Pour tout réel x, si $x \in [-1,1]$, alors $-x \in [-1,1]$

$$f(-x) = \sqrt{1 - \left(-x\right)^2} = \sqrt{1 - x^2}$$

$$f(-x) = f(x)$$

Donc f est une fonction paire

5)
$$f(x) = \frac{2x^3}{x^2 + 5}$$
.

$$D_f = \left\{ x \in \mathbb{R} / x^2 + 5 \neq 0 \right\}$$

$$x^2 + 5 = 0$$
 ssi $x^2 = -5$ pas de solutions

Donc
$$D_{\scriptscriptstyle f} = \mathbb{R}$$

- Pour tout réel x, si $x \in \mathbb{R}$, alors $-x \in \mathbb{R}$

$$f(-x) = \frac{2(-x)^3}{(-x)^2 + 5} = \frac{-2x^3}{x^2 + 5}$$

$$f(-x) = -f(x)$$

Donc f est une fonction impaire

6)
$$f(x) = |x| - \sqrt{2x^2 + 4}$$
.

$$D_f = \{x \in \mathbb{R} / 2x^2 + 4 \ge 0\}$$

Or on sait que $2x^2 \ge 0$ Pour tout réel x, donc

$$2x^2 + 4 \ge 0 + 4$$
 donc $2x^2 + 4 \ge 4 \ge 0$

Donc
$$D_f = \mathbb{R}$$

- Pour tout réel x, si $x \in \mathbb{R}$, alors $-x \in \mathbb{R}$

$$- f(-x) = |-x| - \sqrt{2(-x)^2 + 4} = |x| - \sqrt{2x^2 + 4}$$
$$f(-x) = f(x)$$

Donc f est une fonction paire

6)
$$f(x) = \frac{\sqrt{x}}{2}$$
. $D_f = \{x \in \mathbb{R} \mid x \ge 0\}$ Donc
$$D_f = \mathbb{R}^+ = [0; +\infty[$$

On a $2 \in \mathbb{R}^+$ mais $-2 \notin \mathbb{R}^+$ Donc f est une fonction ni paire ni impaire

Exercice13 : soient les fonctions définies par :

1)
$$f(x) = 7x - 5$$
 2) $g(x) = \frac{2}{x}$

Etudier la monotonie de f et de g

Solutions :1) f est une fonction polynôme donc $D_f = \mathbb{R}$

Soit
$$x_1 \in \mathbb{R}$$
 et $x_2 \in \mathbb{R}$ tq $x_1 \prec x_2$

Donc
$$7x_1 \prec 7x_2$$
 car $7 \succ 0$

Donc
$$7x_1 - 5 < 7x_2 - 5$$

Alors $f(x_1) \prec f(x_2)$ d'où f que est strictement croissante 1) déterminer D_f sur \mathbb{R}

2) Soit g une fonction tq:
$$g(x) = \frac{2}{x}$$

$$g(x) \in \mathbb{R}$$
 ssi $x \neq 0$ Donc $D_o = \mathbb{R} - \{0\} = \mathbb{R}^*$

a)Soit
$$x_1 \in [0; +\infty[$$
 et $x_2 \in [0; +\infty[$ tq $x_1 \prec x_2$

Donc
$$\frac{1}{x_1} \succ \frac{1}{x_2}$$
 Donc $\frac{2}{x_1} \succ \frac{2}{x_2}$ car $2 \succ 0$

Alors $f(x_1) > f(x_2)$ d'où f que est strictement

décroissante sur $[0;+\infty[$

b)Soit
$$x_1 \in]-\infty;0]$$
 et $x_2 \in]-\infty;0]$ tq $x_1 \prec x_2$

Donc
$$\frac{1}{x_1} > \frac{1}{x_2}$$
 Donc $\frac{2}{x_1} > \frac{2}{x_2}$ car $2 > 0$

Alors $f(x_1) \succ f(x_2)$ d'où f que est strictement

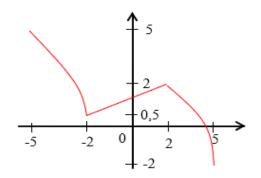
décroissante sur $]-\infty;0]$

b) tableau de variation:

x	$-\infty$	()	$+\infty$
f(x)	/	_		

Exercice14:

Soit la fonction définie par la représentions graphique suivante sur l'intervalle : [-5;5]



Dresser son tableau de variation sur l'intervalle : [-5;5]

Solutions

х	-5	-2	2	5
f(x)	5 /	0,5	<u></u>	-2

Exercice15: Soit f une fonction tq: $f(x) = 3x^2 + 2$

2)calculer le taux d'accroissement de fonction de f

Entre x_1 et x_2 tq $x_1 \neq x_2$

3)étudier les variations de f sur les intervalles $[0; +\infty]$ et

 $]-\infty;0]$

4)Dresser son tableau de variation de f

Solutions :1) f est une fonction polynôme donc $D_f = \mathbb{R}$

2) soient $x_1 \in \mathbb{R}$ et $x_2 \in \mathbb{R}$ tq $x_1 \neq x_2$

$$T(x_1; x_2) = \frac{f(x_1) - f(x_2)}{x_1 - x_2} = \frac{(3x_1^2 + 2) - (3x_2^2 + 2)}{x_1 - x_2}$$

$$T(x_1; x_2) = \frac{3x_1^2 - 3x_2^2 + 2 - 2}{x_1 - x_2} = \frac{3(x_1^2 - x_2^2)}{x_1 - x_2}$$

$$T(x_1; x_2) = \frac{3(x_1 - x_2)(x_1 + x_2)}{x_1 - x_2} = 3(x_1 + x_2)$$

3) soient $x_1 \in \mathbb{R}$ et $x_2 \in \mathbb{R}$ tq $x_1 \neq x_2$ on a:

$$T(x_1; x_2) = 3(x_1 + x_2)$$

a)Soit
$$x_1 \in [0; +\infty[$$
 et $x_2 \in [0; +\infty[$

Donc
$$x_1 \ge 0$$
 et $x_2 \ge 0$ Donc $x_1 + x_2 \ge 0$

Donc
$$3(x_1 + x_2) \ge 0$$
 car $3 > 0$

Donc
$$T(x_1; x_2) = 3(x_1 + x_2) \ge 0$$

d'où f que est croissante sur [0;+∞]

b)Soit
$$x_1 \in]-\infty;0]$$
 et $x_2 \in]-\infty;0]$

Donc
$$x_1 \le 0$$
 et $x_2 \le 0$ Donc $x_1 + x_2 \le 0$

Donc
$$3(x_1 + x_2) \le 0$$
 car $3 > 0$

Donc $T(x_1; x_2) = 3(x_1 + x_2) \le 0$

d'où f que est décroissante sur $]-\infty;0]$

4) <u>résumé</u>: **tableau de variation**: $f(0) = 3 \times 0^2 + 2 = 2$

\boldsymbol{x}	$-\infty$ 0 $+\infty$
f(x)	

Exercice 16: Soit g une fonction tq: $g(x) = \frac{x}{x+1}$

1)déterminer D_{g}

2)calculer le taux d'accroissement de fonction de g

Entre x_1 et x_2 tq $x_1 \neq x_2$

3)étudier les variations de g sur les intervalles $I =]-\infty; -1[$ 4)En déduire les variations de f sur D_f

et
$$J =]-1; +\infty[$$

4)Dresser son tableau de variation de f

Solutions:
$$g(x) = \frac{x}{x+1}$$

1)on a $g(x) \in \mathbb{R}$ ssi $x+1 \neq 0$ ssi $x \neq -1$

Donc
$$D_g = \mathbb{R} - \{-1\}$$

2) soient $x_1 \in D_g$ et $x_2 \in D_g$ tq $x_1 \neq x_2$

on a:
$$T(x_1; x_2) = \frac{g(x_1) - g(x_2)}{x_1 - x_2}$$

$$g(x_1) - g(x_2) = \frac{x_1}{x_1 + 1} - \frac{x_2}{x_2 + 1} = \frac{x_1(x_2 + 1) - x_2(x_1 + 1)}{(x_1 + 1)(x_2 + 1)}$$

$$T(x_1; x_2) = \frac{x_1 - x_2}{(x_1 + 1)(x_2 + 1)} \times \frac{1}{x_1 - x_2} = \frac{1}{(x_1 + 1)(x_2 + 1)}$$

3)a)sur
$$I =]-\infty; -1[$$

Soit
$$x_1 \in]-\infty; -1[$$
 et $x_2 \in]-\infty; -1[$ $x_1 \neq x_2$

Donc $x_1 \prec -1$ et $x_2 \prec -1$ Donc $x_1 + 1 \prec 0$ et

 $x_2 + 1 < 0$ Donc $(x_1 + 1)(x_2 + 1) > 0$ Donc

$$T(x_1; x_2) = \frac{1}{(x_1+1)(x_2+1)} > 0 \text{ sur } I =]-\infty; -1[$$

d'où g que est strictement croissante sur $I = \left] -\infty; -1 \right[$

b)sur
$$J =]-1; +\infty[$$

Soit
$$x_1 \in]-1; +\infty[$$
 et $x_2 \in]-1; +\infty[$ $x_1 \neq x_2$

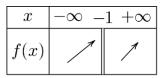
Donc $x_1 > -1$ et $x_2 > -1$ Donc $x_1 + 1 > 0$ et

 $x_2 + 1 > 0$ Donc $(x_1 + 1)(x_2 + 1) > 0$ Donc

$$T(x_1; x_2) = \frac{1}{(x_1+1)(x_2+1)} > 0 \text{ sur } J =]-1; +\infty[$$

d'où g que est strictement croissante sur $J=\left]-1;+\infty\right[$

4) résumé : tableau de variation :



Exercice17: Soit f une fonction tq : $f(x) = x + \frac{1}{x}$

1)Déterminer D_f et étudier la parité de f

2)Calculer Le taux d'accroissement $T(x_1; x_2)$ de f entre x_1

et x_2 deux éléments de D_f tq $x_1 \neq x_2$

3)Étudier les variations de f sur I = [0;1] puis sur

$$J = [1; +\infty]$$

5)Dresser le tableau de variations de f sur $D_{_f}$

Réponses: 1) on a $f(x) \in \mathbb{R}$ ssi $x \neq 0$ Donc

$$D_f = \mathbb{R} - \{0\} = \mathbb{R}^*$$

- Pour tout réel x, si $x \in \mathbb{R}^*$, alors $-x \in \mathbb{R}^*$

$$f(-x) = -x + \frac{1}{-x} = -x - \frac{1}{x} = -\left(x + \frac{1}{x}\right)$$

$$f(-x) = -f(x)$$

Donc f est une fonction impaire,

2)
$$f(x_1) - f(x_2) = \left(x_1 + \frac{1}{x_1}\right) - \left(x_2 + \frac{1}{x_2}\right) = x_1 + \frac{1}{x_1} - x_2 - \frac{1}{x_2}$$

$$= \frac{x_1^2 \times x_2 + x_2 - x_2^2 \times x_1 - x_1}{x_1 \times x_2} = \frac{x_1 \times x_2 (x_1 - x_2) + x_2 - x_1}{x_1 \times x_2} = \frac{(x_1 - x_2)(x_1 \times x_2 - 1)}{x_1 \times x_2}$$

$$T(x_1; x_2) = \frac{(x_1 - x_2)(x_1 \times x_2 - 1)}{x_1 \times x_2} \times \frac{1}{x_1 - x_2} = \frac{x_1 \times x_2 - 1}{x_1 \times x_2}$$

a)sur
$$I =]0;1]$$

Soit
$$x_1 \in [0;1]$$
 et $x_2 \in [0;1]$

Donc
$$0 \prec x_1 \le 1$$
 et $0 \prec x_2 \le 1$ $x_2 + 1 \prec 0$

Donc
$$0 \prec x_1 x_2 \le 1$$
 et $x_1 \ne x_2$ Donc $x_1 x_2 - 1 \prec 0$ et on

a
$$0 \prec x_1 x_2$$
 Donc $T(x_1; x_2) = \frac{x_1 \times x_2 - 1}{x_1 \times x_2} \prec 0$

d'où f que est strictement décroissante sur I = [0;1]

b)sur
$$J = [1; +\infty[$$

Soit
$$x_1 \in [1; +\infty[$$
 et $x_2 \in [1; +\infty[$

Donc
$$x_1 \ge 1$$
 et $x_2 \ge 1$ Donc $x_1 x_2 \ge 1$ et $x_1 \ne x_2$

Donc
$$x_1 x_2 > 1$$
 Donc $x_1 x_2 - 1 > 0$

et on a
$$0 < x_1 x_2$$
 Donc $T(x_1; x_2) = \frac{x_1 \times x_2 - 1}{x_1 \times x_2} > 0$

d'où f que est strictement croissante sur $J = [1; +\infty]$

3) f est impaire et le symétrique de I = [0,1] est l'intervalle $[6-(2x-1)^2 = 6-(4x^2-4x+1)]$

I' = [-1; 0[et le symétrique de $J = [1; +\infty[$ est l'intervalle $] = 6 - 4x^2 + 4x - 1 = -4x^2 + 4x + 5$ $J' =]-\infty;-1]$

Donc : f est strictement décroissante sur I Donc f est strictement décroissante sur I'

f est strictement croissante sur J Donc f est strictement croissante sur J'

5) le tableau de variations de f sur D_f

$$f\left(x\right) = 1 + \frac{1}{1} = 2$$

x	$-\infty$ -1	0	1	$+\infty$
Variations $\operatorname{de} f(x)$		*		1

$$f(-1) = -1 - \frac{1}{1} = -2$$

Exercice18: Soit f une fonction numérique tq:

$$f(x) = 5x^2 + 3$$

Montrer que f(0) = 3 est un minimum de f sur \mathbb{R}

 $R\'{e}ponses: D_f = \mathbb{R}$

On a pour tout $x \in \mathbb{R}$ $x^2 \ge 0$ Donc $5x^2 \ge 0$ car $5 \ge 0$

Par suite $5x^2 + 3 \ge 3$ et on a f(0) = 3

Donc pour tout $x \in \mathbb{R}$ $f(x) \ge f(0)$

d'où f(0) = 3 est un minimum de f sur \mathbb{R}

Exercice19 : Soit g une fonction numérique tq :

$$g(x) = -4x^2 + 1$$

Montrer que g(0) = 1 est un maximum de g sur \mathbb{R}

Réponses: Soit g une fonction numérique tq :

$$g(x) = -4x^2 + 1$$
 $D_g = \mathbb{R}$

On a pour tout $x \in \mathbb{R}$ $x^2 \ge 0$

Donc $-4x^2 \le 0$ car -4 < 0

Par suite $-4x^2 + 1 \le 1$ et on a g(0) = 1

Donc pour tout $x \in \mathbb{R}$ $g(x) \le g(0)$

d'où g(0) = 1 est un maximum de g sur \mathbb{R}

Exercice20 : Soit f une fonction numérique tq :

$$f(x) = -4x^2 + 4x + 5$$

1°a) montrer que $f(x) = 6 - (2x - 1)^2$ pour tout $x \in \mathbb{R}$

b) montrer que $f(x) \le 6$ pour tout $x \in \mathbb{R}$

 2° calculer : $f\left(\frac{1}{2}\right)$ et en déduire les extrémums de f sur \mathbb{R}

Reponses: 1°a) on a $D_f = \mathbb{R}$

$$6 - (2x - 1)^2 = 6 - (4x^2 - 4x + 1)$$

$$=6-4x^2+4x-1=-4x^2+4x+5$$

Donc:
$$f(x) = 6 - (2x - 1)^2$$

b) Donc pour tout $x \in \mathbb{R}$ on a $(2x-1)^2 \ge 0$

Par suite
$$-(2x-1)^2 \le 0$$
 donc $6-(2x-1)^2 \le 6$

Donc pour tout $x \in \mathbb{R}$ $f(x) \le 6$

$$2^{\circ}$$
 on a $f\left(\frac{1}{2}\right) = 6 - \left(2 \times \frac{1}{2} - 1\right)^2 = 6 - \left(1 - 1\right)^2 = 6$

on a pour tout $x \in \mathbb{R}$ $6-(2x-1)^2 \le 6$ alors

$$f(x) \le f\left(\frac{1}{2}\right)$$
 pour tout $x \in \mathbb{R}$

Donc $f\left(\frac{1}{2}\right) = 6$ est un maximum de f sur \mathbb{R}

Exercice21 : donner le tableau et représenter la courbe des fonctions numériques définies par :

1)
$$f(x) = \frac{1}{2}x^2$$
 2) $f(x) = -\frac{1}{2}x^2$

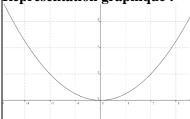
Réponses:1)
$$D_f = \mathbb{R}$$
 et On a $a = \frac{1}{2} > 0$

Donc : <u>Tableau de variations de f</u>

x		$-\infty$	0	$+\infty$
f(x)	:)	$+\infty$		

Х	0	1	2	3
f(x)	0	$\frac{1}{2}$	2	$\frac{9}{2}$

Représentation graphique :



2)Soit f une fonction numérique tq : $f(x) = -\frac{1}{2}x^2$

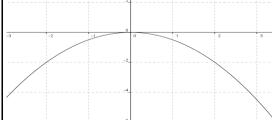
$$D_f = \mathbb{R}$$
 et On a $a = -\frac{1}{2} < 0$

Donc : <u>Tableau de variations de f</u>

\boldsymbol{x}	$-\infty$	0	$+\infty$
f(x)	$+\infty$	7 0\	$+\infty$

X	0	$\frac{1}{2}$	1	2
f(x)	0	$-\frac{1}{8}$	$-\frac{1}{2}$	-2

Représentation graphique :



Exercice22: 1° Soit f une fonction numérique tq: $f(x) = 2x^2 - 4x - 2$ et (C_f) sa courbe représentative dans le repére $(O; \vec{i}; \vec{j})$

1) déterminer D_f

2) déterminer α et β tel que : $f(x) = 2(x-\alpha)^2 + \beta$ Pour tout $x \in \mathbb{R}$

3) déterminer le Tableau de variations de f

4) tracer la courbe représentative (C_f) dans le repére

$$(O;\vec{i};\vec{j})$$

Solution :1) on a f est une fonction polynôme donc $D_f = \mathbb{R}$

2)On a
$$a = 2$$
 et $b = -4$ et $c = -2(f(x)) = ax^2 + bx + c$

Donc
$$\alpha = -\frac{b}{2a} = \frac{4}{2 \times 2} = 1$$
 et $\beta = -\frac{\Delta}{4a} = -\frac{32}{4 \times 2} = -4$

Pour tout réel $x \in \mathbb{R}$ on peut écrire sous la form

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a} = 2(x-1)^2 - 4$$

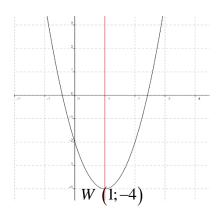
$$(f(1)=2-4-2=-4)$$

3) Soit W (1;-4) Donc dans le repére (0; \vec{i} ; \vec{j}) la courbe

 (C_f) c'est une parabole de sommet W(1;-4) et d'axe de symétrie la droite x=2symétrie la droite x = 1

Tableau de variations de f: On a a = 2 > 0 donc:

x	$-\infty$	1	$+\infty$
f(x)		_4	1



Exercice23: 1° Soit f une fonction numérique tq:

$$g(x) = -\frac{1}{2}x^2 + 2x + 1$$
 et (C_f) sa courbe représentative

dans le repére $(O; \vec{i}; \vec{j})$

1) déterminer D_{ρ}

2) déterminer
$$\alpha$$
 et β tel que : $g(x) = -\frac{1}{2}(x-\alpha)^2 + \beta$

Pour tout $x \in \mathbb{R}$

3) déterminer le Tableau de variations de g

4) tracer la courbe représentative (C_{g}) dans le repére

$$(O;\vec{i};\vec{j})$$

Solution :1) Soit g une fonction numérique tq :

$$g(x) = -\frac{1}{2}x^2 + 2x + 1$$

on a g est une fonction polynôme donc $D_{g} = \mathbb{R}$

2)On a
$$a = -\frac{1}{2}$$
 et $b = 2$ et $c = 1(g(x)) = ax^2 + bx + c$

Donc
$$\alpha = -\frac{b}{2a} = \frac{-2}{2 \times \left(-\frac{1}{2}\right)} = 2$$
 et $\beta = -\frac{\Delta}{4a} = -\frac{4+2}{-2} = 3$

Donc pour tout réel $x \in \mathbb{R}$ on peut écrire sous la forme :

$$g(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a} = -\frac{1}{2}(x - 2)^2 + 3$$

$$g(2) = -\frac{1}{2}(2-2)+3=3$$

3)Soit $W\left(2;3\right)$ Donc dans le repére $\left(0;\vec{i};\vec{j}\right)$ la courbe

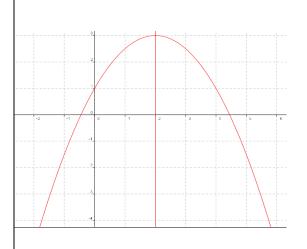
 (C_g) c'est une parabole de sommet W(2;3) et d'axe de

<u>Tableau de variations de f</u>

On a
$$a = -\frac{1}{2} < 0$$
 donc :

x	$-\infty \ 2 + \infty$
f(x)	³

4)



Exercice24: 1° Soit f une fonction numérique tq:

$$f(x) = \frac{-2x+1}{2x-4}$$
 et (C_f) sa courbe représentative dans le repére $(O; \vec{i}; \vec{j})$

1) déterminer D_f

2) déterminer
$$\alpha$$
 et β et k t el que : $f(x) = \beta + \frac{k}{x - \alpha}$

Pour tout $x \in \mathbb{R}$

- 3) déterminer le Tableau de variations de f
- 4) tracer la courbe représentative (C_f) dans le repére

$$(O;\vec{i};\vec{j})$$

Solution:1)Soit f une fonction numérique tq:

$$f(x) = \frac{-2x+1}{2x-4}$$

on a $f(x) \in \mathbb{R}$ ssi $2x - 4 \neq 0$ ssi $x \neq 2$

Donc
$$D_f = \mathbb{R} - \{2\}$$

2)Si $x \in \mathbb{R} - \{2\}$ on a

$$f(x) = \frac{-(2x-4)-3}{2x-4} = \frac{-(2x-4)}{2x-4} + \frac{-3}{2x-4} = -1 + \frac{-\frac{3}{2}}{x-2}$$

$$3)f(x) + 1 = \frac{-\frac{3}{2}}{2x-4}$$

On pose
$$\alpha = 2$$
 et $\beta = -1$ et soit $W(2; -1)$

 \bullet Donc dans le repére $\left(W\;;\overrightarrow{i}\;;\overrightarrow{j}\;\right)$ l'équation de $\left(C_{f}\;\right)$ est

$$Y = \frac{-3/2}{X}$$
 avec $Y = y + 1$ et $X = x - 2$ donc (C_f) est une hyperbole de centre W et d'asymptotes les droites

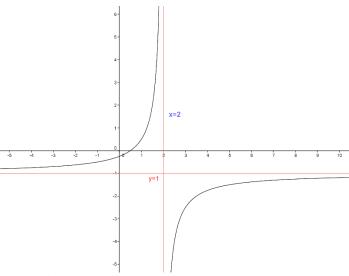
une hyperbole de centre W et d'asymptotes les droit 2) d'équations respectives x = 2 et y = -1

• <u>Tableau de variations</u> $X \longrightarrow \frac{-3/2}{X} \left(-3/2 < 0\right)$

			Λ \ '	
x	$-\infty$	0		$+\infty$
f(x)				

4)

-2	1-	0	1	2	3	4
1	$\frac{1}{2}$	-1		5	$\frac{7}{2}$	3



Exercice25: 1° Soit f une fonction numérique tq:

$$f\left(x\right) = \frac{2x+1}{x-1}$$
 et $\left(C_f\right)$ sa courbe représentative dans le repére $\left(O; \vec{i}; \vec{j}\right)$

- 1) déterminer D_f
- 2) déterminer α et β et k t el que : $f(x) = \beta + \frac{k}{x \alpha}$

Pour tout $x \in \mathbb{R}$

- 3) déterminer le Tableau de variations de f
- 4) tracer la courbe représentative $\left(C_{f}^{}\right)$ dans le repére

$$\left(O;\vec{i};\vec{j}\right)$$

Solution :1) on a $f(x) \in \mathbb{R}$ ssi $x - 1 \neq 0$ ssi $x \neq 1$

Donc
$$D_f = \mathbb{R} - \{1\}$$

2)Si $x \in \mathbb{R} - \{1\}$ on a:

$$\begin{array}{c|cccc}
2x+1 & & x-1 \\
-2x+2 & & 2
\end{array}$$

$$f(x) = \frac{2x+1}{x-1} = \frac{2(x-1)+3}{x-1} = \frac{2(x-1)}{x-1} + \frac{3}{x-1} = 2 + \frac{3}{x-1}$$

3)
$$f(x) - 2 = \frac{3}{x - 1}$$
 ssi $y - 2 = \frac{3}{x - 1}$

On pose
$$\begin{cases} x - 1 = X \\ y - 2 = Y \end{cases}$$
 donc
$$\begin{cases} x = X + 1 \\ y = Y + 2 \end{cases}$$

$$y = \frac{2x+1}{x-1} \operatorname{ssi} Y = \frac{3}{X}$$

• <u>Tableau de variations de</u> $X \longrightarrow \frac{3}{X} (3 \succ 0)$

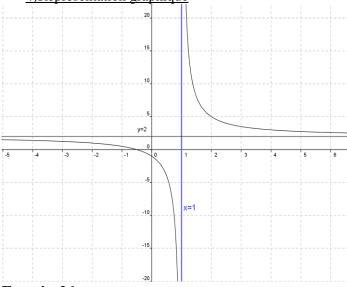
x	$-\infty$	0	$+\infty$
f(x)			

On a
$$\begin{cases} X = 0 \\ Y = 0 \end{cases} \text{donc} \begin{cases} x = 1 \\ y = 2 \end{cases}$$

Donc le tableau de variations de $x \longrightarrow \frac{2x+1}{x-1}$ $y = \frac{-x}{x-2}$ ssi $Y = \frac{-2}{X}$

	\boldsymbol{x}	$-\infty$	1	$+\infty$
f	f(x)	_		`*

4)Représentation graphique



Exercice26: 1° Soit f une fonction numérique tq:

$$g(x) = \frac{-x}{x-2}$$
 et (C_g) sa courbe représentative dans le repére $(O; \vec{i}; \vec{j})$

- 1) déterminer D_g
- 2) déterminer α et β et k t el que : $g(x) = \beta + \frac{k}{x}$

Pour tout $x \in \mathbb{R}$

- 3) déterminer le Tableau de variations de g
- 4) tracer la courbe représentative (C_g)

Solution :1)
$$g(x) = \frac{-x}{x-2}$$

on a $g(x) \in \mathbb{R}$ ssi $x-2 \neq 0$ ssi $x \neq 2$

Donc
$$D_g = \mathbb{R} - \{2\}$$

2)Si
$$x \in \mathbb{R} - \{2\}$$
 on a

$$\begin{array}{c|c}
-x & x-2 \\
x-2 & -1
\end{array}$$

$$g(x) = \frac{-x}{x-2} = \frac{-1(x-2)-2}{x-2} = \frac{-1(x-2)}{x-2} + \frac{-2}{x-2} = -1 + \frac{-2}{x-2}$$

3)
$$g(x)+1=\frac{-2}{x-2}$$
 ssi $y+1=\frac{-2}{x-2}$

On pose
$$\begin{cases} x - 2 = X \\ y + 1 = Y \end{cases}$$
 donc
$$\begin{cases} x = X + 2 \\ y = Y - 1 \end{cases}$$

$$y = \frac{-x}{x - 2} \operatorname{ssi} Y = \frac{-2}{X}$$

• <u>Tableau de variations de</u> $X \longrightarrow \frac{-2}{X} (-2 < 0)$

x	$-\infty$ () +∞
f(x)	1	1

On a
$$\begin{cases} X = 0 \\ Y = 0 \end{cases} \text{ donc } \begin{cases} x = 2 \\ y = -1 \end{cases}$$

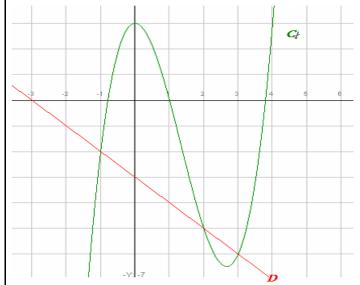
Donc le tableau de variations de $x \longrightarrow \frac{-x}{x-2}$

x	$-\infty$ 2	$2 + \infty$
f(x)	1	1

4)Représentation graphique

-1	0	1	2	3	4	5
-1/3	0	1		-3	-2	-5/3
		5	a			
		4				
		3				
		2				
			x=2			
-7 -6 -5	4 3	2 1 0	1 2 3	4 5 5	7 8 9	10 11
		.24=-1				
		.3				
			/			
		4	11/1			
		-5	1	ttt		

Exercice27: Soit la courbe (C_f) représentative de f telle **Réponses:** 1) Les courbes représentatives (C_f) (en rouge) que $f(x) = x^3 - 4x^2 + 3$ et la droite (D) d'équation (D) (en bleu) sont données dans le repére ci-dessous y = -x - 3



- 1- Résoudre graphiquement l'équation f(x) = 3
- 2- puis l'inéquation $f(x) \prec 3$.
- 3- Résoudre graphiquement l'équation f(x) = 0 et l'inéquation $f(x) \ge 0$
- 4- Résoudre graphiquement l'équation f(x) = -x 3puis l'inéquation $f(x) \le -x - 3$

Réponses : 1) f(x) = 3 La solution est l'ensemble des antécédents de 3 : $S = \{0, 4\}$

2- f(x) = 0 La solution est l'ensemble des antécédents de

$$0: S = \{a; 1; b\} \text{ Avec } -1 \prec a \prec -0.5 \text{ et } 3.5 \prec b \prec 4$$

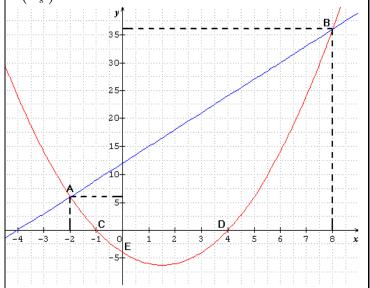
$$f(x) \ge 0$$
 $S = [a;1] \cup [b;+\infty[$

3- f(x) = -x - 3 La solution l'ensemble des abscisses des points d'intersection de (C_f) et de D: y = -x - 3 donc $S = \{-1, 2, 3\}$

$$f(x) \le -x - 3$$
 $S =]-\infty; -1] \cup [2;3]$

Exercice28: Soient f et g les deux fonctions définies sur R $x \in -\infty$; $-2[\cup]8; +\infty[$ par: $f(x) = x^2 - 3x - 4$ et g(x) = 3x + 12

- 1) Tracer Les courbes représentatives (C_f) et (C_g)
- 2) Résoudre graphiquement et algébriquement l'équation f(x) = g(x)
- 3) Résoudre graphiquement et algébriquement l'inéquation $f(x) \ge g(x)$
- 4) Trouver les points d'intersection de la courbe (C_f) avec les axes du repére



2) a) résolution graphique de l'équation f(x) = g(x)

Il suffit de chercher les abscisses des points d'intersection des courbes $(C_{_f})$ et $(C_{_g})$

On a donc x = -2 et x = 8 donc $S = \{-2, 8\}$

b) résolution algébrique de l'équation f(x) = g(x)

$$f(x) = g(x)$$
 ssi $x^2 - 3x - 4 = 3x + 12$ ssi

$$|x|^2 - 6x - 16 = 0$$

$$a = 1$$
 et $b = -6$ et $c = -16$

$$\Delta = b^2 - 4ac = (-6)^2 - 4 \times 1 \times (-16) = 36 + 64 = 100 = (10)^2 > 0$$

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

$$x_1 = \frac{-(-6) + \sqrt{100}}{2 \times 1} = \frac{6 + 10}{2} = \frac{16}{2} = 8$$
 et

$$x_2 = \frac{-(-6) - \sqrt{100}}{2 \times 1} = \frac{6 - 10}{2} = \frac{-4}{2} = -2$$

donc
$$S = \{-2, 8\}$$

3) a) résolution graphique de l'inéquation f(x) > g(x)

La courbe (C_f) est au-dessus de (C_g) si

$$x \in]-\infty; -2[\cup]8; +\infty$$

Donc
$$S =]-\infty; -2[\cup]8; +\infty[$$

b) résolution algébrique de l'inéquation f(x) > g(x)

$$f(x) \succ g(x)$$
 ssi $x^2 - 3x - 4 \succ 3x + 12$ ssi

$$x^2 - 6x - 16 > 0$$

Les racines sont : $x_1 = 8$ et $x_2 = -2$

x	$-\infty$	-2	3	3	$+\infty$
$x^2-6x-16$	+	þ	- ()	+

Donc
$$S =]-\infty; -2[\cup]8; +\infty[$$

4)a) Intersection de la courbe (C_f) avec l'axe des abscisses

Les points d'intersection C et D de la courbe (C_f) avec l'axe des abscisses ont leurs ordonnées nulles, et leurs

abscisses sont les solutions de l'équation f(x) = 0

$$f(x) = 0$$
 ssi $x^2 - 3x - 4 = 0$

$$a = 1$$
 et $b = -3$ et $c = -4$

$$\Delta = b^2 - 4ac = (-3)^2 - 4 \times 1 \times (-4) = 9 + 16 = 25 = (5)^2 > 0$$

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

$$x_1 = \frac{-(-3) + \sqrt{25}}{2 \times 1} = \frac{3+5}{2} = \frac{8}{2} = 4$$
 et

$$x_2 = \frac{-(-3) - \sqrt{25}}{2 \times 1} = \frac{3 - 5}{2} = \frac{-2}{2} = -1$$

donc les points d'intersection de la courbe $\left(C_f\right)$ avec l'axe des abscisses sont :

$$C(-1;0)$$
 et $D(4;0)$

b) Intersection de la courbe $\left(C_{f}\right)$ avec l'axe des ordonnées

le point d'intersection de la courbe $\left(C_f\right)$ avec l'axe des ordonnées a une abscisse nulle

et on a
$$f(0) = 0^2 - 3 \times 0 - 4 = -4$$

donc le point d'intersection de la courbe $\left(C_f\right)$ avec l'axe des ordonnées est : $E\left(-4;0\right)$

« C'est en forgeant que l'on devient forgeron » Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices

Que l'on devient un mathématicien

