
www.pdf-cours.online

MECANIQUE DU POINT MATERIEL

Rattrapage

Exercice 1 (5 points)

On considère le repère fixe $R_1(O_1; X_1, Y_1, Z_1)$ orthonormé direct, et le repère relatif $R_2(O_2; X_2, Y_2, Z_2)$ muni d'une base $(\overline{i_2}, \overline{j_2}, \overline{k_2})$ orthonormée directe. Le repère R_2 est en mouvement de translation rectiligne tel qu'à chaque instant $t: \overline{O_1O_2} = \frac{1}{2}at^2\overline{k_2}$ (a est une constante positive et t désigne le temps). Une particule M est repérée dans R_2 par son vecteur position $\overline{O_2M} = b\cos\omega t\overline{i_2} + b\sin\omega t\overline{j_2}$ (b et ω sont des constantes positives.)

Déterminer dans la base $(\overline{i_2}, \overline{j_2}, \overline{k_2})$,

- 1) la vitesse relative $\overline{V_r}$ et l'accélération relative $\overline{\gamma_r}$ de M,
- 2) la vitesse d'entraînement $\overline{V_e}$ de la particule M,
- 3) les accélérations d'entraînement $\overline{\gamma_e}$ et de Coriolis $\overline{\gamma_c}$.
- 4) En déduire la vitesse absolue $\overline{V_a}$ et l'accélération absolue $\overline{\gamma}$

Exercice 2 (4 points)

Dans un repère fixe R O;X,Y,Z) de base orthonormée directe $(\vec{i},\vec{j},\vec{k})$, une force \vec{F} appliquée au point matériel M(x,y,z) de masse m a pour expression: $\vec{F} = -x^2\vec{i} + \frac{2}{y^2}\vec{j}$.

On considère 2 points A(1,1,0) et B(2,2,0).

- 1) Trouver l'expression du travail $W_{A\to B}$ effectué par \vec{F} lorsque le point M se déplace de A à B.
- .2) Calculer le travail effectué par \vec{F} lorsque le point M se déplace le long d'un contour fermé ABA.
- 3) En déduire la variation de l'énergie cinétique $E_c(B) E_c(A)$ entre les points A et B.